版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市清華附中2026屆高二數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知實(shí)數(shù)滿足方程,則的最大值為()A.3 B.2C. D.2.已知是空間的一個(gè)基底,若,,若,則()A. B.C.3 D.3.在數(shù)列中,,,則()A.985 B.1035C.2020 D.20704.已知在直角坐標(biāo)系xOy中,點(diǎn)Q(4,0),O為坐標(biāo)原點(diǎn),直線l:上存在點(diǎn)P滿足.則實(shí)數(shù)m的取值范圍是()A. B.C. D.5.南宋數(shù)學(xué)家楊輝在《詳解九章算術(shù)法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般的等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項(xiàng)之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列,這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項(xiàng)分別為2,3,5,8,12,17,23,則該數(shù)列的第31項(xiàng)為()A.336 B.467C.483 D.6016.曲線在點(diǎn)處的切線方程是()A. B.C. D.7.若,,,則a,b,c與1的大小關(guān)系是()A. B.C. D.8.如圖,函數(shù)的圖象在P點(diǎn)處的切線方程是,若點(diǎn)的橫坐標(biāo)是5,則()A. B.1C.2 D.09.已知雙曲線的離心率為,左焦點(diǎn)為F,實(shí)軸右端點(diǎn)為A,虛軸上端點(diǎn)為B,則為()A.直角三角形 B.鈍角三角形C.等腰三角形 D.銳角三角形10.已知拋物線的焦點(diǎn)為F,直線l經(jīng)過(guò)點(diǎn)F交拋物線C于A,B兩點(diǎn),交拋物淺C的準(zhǔn)線于點(diǎn)P,若,則為()A.2 B.3C.4 D.611.函數(shù)直線與的圖象相交于A、B兩點(diǎn),則的最小值為()A.3 B.C. D.12.平面與平面平行的充分條件可以是()A.平面內(nèi)有一條直線與平面平行B.平面內(nèi)有兩條直線分別與平面平行C.平面內(nèi)有無(wú)數(shù)條直線分別與平面平行D平面內(nèi)有兩條相交直線分別與平面平行二、填空題:本題共4小題,每小題5分,共20分。13.已知,,若,則_________.14.已知雙曲線C的方程為,,,雙曲線C上存在一點(diǎn)P,使得,則實(shí)數(shù)a的最大值為___________.15.雙曲線上一點(diǎn)P到的距離最小值為___________.16.已知函數(shù),,對(duì)一切,恒成立,則實(shí)數(shù)的取值范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列是等差數(shù)列,其前n項(xiàng)和為,,,數(shù)列滿足(且),.(1)求和的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.18.(12分)已知函數(shù).(1)設(shè)函數(shù),討論在區(qū)間上的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),()(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值),且,證明:.19.(12分)已知,(1)若,p且q為真命題,求實(shí)數(shù)x的取值范圍;(2)若p是q的充分條件,求實(shí)數(shù)m的取值范圍20.(12分)已知直線經(jīng)過(guò)點(diǎn),且滿足下列條件,求相應(yīng)的方程.(1)過(guò)點(diǎn);(2)與直線垂直.21.(12分)已知等差數(shù)列和正項(xiàng)等比數(shù)列滿足(1)求的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和22.(10分)為了了解高一年級(jí)學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),圖中從左到右各小長(zhǎng)方形面積之比為2∶4∶17∶15∶9∶3,第二小組的頻數(shù)為12(1)第二小組的頻率是多少?樣本量是多少?(2)若次數(shù)在110以上(含110次)為達(dá)標(biāo),則該校全體高一年級(jí)學(xué)生的達(dá)標(biāo)率是多少?(3)樣本中不達(dá)標(biāo)的學(xué)生人數(shù)是多少?(4)第三組的頻數(shù)是多少?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】將方程化為,由圓的幾何性質(zhì)可得答案.【詳解】將方程變形為,則圓心坐標(biāo)為,半徑,則圓上的點(diǎn)的橫坐標(biāo)的范圍為:則x的最大值是故選:D.2、C【解析】由,可得存在實(shí)數(shù),使,然后將代入化簡(jiǎn)可求得結(jié)果【詳解】,,因,所以存在實(shí)數(shù),使,所以,所以,所以,得,,所以,故選:C3、A【解析】根據(jù)累加法得,,進(jìn)而得.【詳解】解:因?yàn)樗?,?dāng)時(shí),,,……,,所以,將以上式子相加得,所以,,.當(dāng)時(shí),,滿足;所以,.所以.故選:A4、A【解析】根據(jù)給定直線設(shè)出點(diǎn)P的坐標(biāo),再借助列出關(guān)于的不等式,然后由不等式有解即可計(jì)算作答.【詳解】因點(diǎn)P在直線l:上,則設(shè),于是有,而,因此,,即,依題意,上述關(guān)于的一元二次不等式有實(shí)數(shù)解,從而有,解得,所以實(shí)數(shù)m的取值范圍是.故選:A5、B【解析】先由遞推關(guān)系利用累加法求出通項(xiàng)公式,直接帶入即可求得.【詳解】根據(jù)題意,數(shù)列2,3,5,8,12,17,23……滿足,,所以該數(shù)列的第31項(xiàng)為.故選:B6、B【解析】求導(dǎo),得到曲線在點(diǎn)處的斜率,寫出切線方程.【詳解】因?yàn)?,所以曲線在點(diǎn)處斜率為4,所以曲線在點(diǎn)處的切線方程是,即,故選:B7、C【解析】根據(jù)條件構(gòu)造函數(shù),并求其導(dǎo)數(shù),判斷該函數(shù)的單調(diào)性,據(jù)此作出該函數(shù)的大致圖象,由圖象可判斷a,b,c與1的大小關(guān)系.【詳解】令,則當(dāng)時(shí),,當(dāng)時(shí),即函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,而,由可知,故作出函數(shù)大致圖象如圖:由圖象易知,,故選:C.8、C【解析】函數(shù)的圖象在點(diǎn)P處的切線方程是,所以,在P處的導(dǎo)數(shù)值為切線的斜率,2,故選C考點(diǎn):本題主要考查導(dǎo)數(shù)的幾何意義點(diǎn)評(píng):簡(jiǎn)單題,切線的斜率等于函數(shù)在切點(diǎn)的導(dǎo)函數(shù)值9、A【解析】根據(jù)三邊的關(guān)系即可求出【詳解】因,所以,而,,,所以,即,所以為直角三角形故選:A10、C【解析】由題意可知設(shè),由可得,可求得,,根據(jù)模長(zhǎng)公式計(jì)算即可得出結(jié)果.【詳解】由題意可知,準(zhǔn)線方程為,設(shè),可知,,解得:,代入到拋物線方程可得:.,故選:C11、C【解析】先求出AB坐標(biāo),表示出,規(guī)定函數(shù),其中,利用導(dǎo)數(shù)求最小值.【詳解】聯(lián)立解得可得點(diǎn).聯(lián)立解得可得點(diǎn).由題意可得解得,令,其中,∴.∴函數(shù)單調(diào)遞減;.因此,的最小值為故選:C【點(diǎn)睛】距離的最值求解:(1)幾何法求最值;(2)代數(shù)法:表示出距離,利用函數(shù)求最值.12、D【解析】根據(jù)平面與平面平行的判定定理可判斷.【詳解】對(duì)A,若平面內(nèi)有一條直線與平面平行,則平面與平面可能平行或相交,故A錯(cuò)誤;對(duì)B,若平面內(nèi)有兩條直線分別與平面平行,若這兩條直線平行,則平面與平面可能平行或相交,故B錯(cuò)誤;對(duì)C,若平面內(nèi)有無(wú)數(shù)條直線分別與平面平行,若這無(wú)數(shù)條直線互相平行,則平面與平面可能平行或相交,故C錯(cuò)誤;對(duì)D,若平面內(nèi)有兩條相交直線分別與平面平行,則根據(jù)平面與平面平行的判定定理可得平面與平面平行,故D正確.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意,,利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,然后利用定積分性質(zhì)可得,原式,最后利用微積分基本定理計(jì)算,,利用定積分的幾何意義計(jì)算,即可得答案.【詳解】解:因?yàn)?,,且,所以,解得,所?===.故答案為:.14、2【解析】設(shè)出,根據(jù)條件推出在圓上運(yùn)動(dòng),根據(jù)題意要使雙曲線和圓有交點(diǎn),則得答案.【詳解】設(shè)點(diǎn),由得:,所以,化簡(jiǎn)得:,即滿足條件的點(diǎn)在圓上運(yùn)動(dòng),又點(diǎn)存在于上,故雙曲線與圓有交點(diǎn),則,即實(shí)數(shù)a的最大值為2,故答案為:215、2【解析】設(shè)出點(diǎn)P的坐標(biāo),利用兩點(diǎn)間距離公式結(jié)合二次函數(shù)求出最小值即可作答.【詳解】設(shè),則,即,于是得,而,則當(dāng)時(shí),,所以雙曲線上一點(diǎn)P到的距離最小值為2.故答案為:216、【解析】通過(guò)分離參數(shù),得到關(guān)于x的不等式;再構(gòu)造函數(shù),通過(guò)導(dǎo)數(shù)求得函數(shù)的最值,進(jìn)而求得a的取值范圍【詳解】因?yàn)?,代入解析式可得分離參數(shù)a可得令()則,令解得所以當(dāng)0<x<1,,所以h(x)在(0,1)上單調(diào)遞減當(dāng)1<x,,所以h(x)在(1,+∞)上單調(diào)遞增,所以h(x)在x=1時(shí)取得極小值,也即最小值所以h(x)≥h(1)=4因?yàn)閷?duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4所以a的取值范圍為【點(diǎn)睛】本題綜合考查了函數(shù)與導(dǎo)數(shù)的應(yīng)用,分離參數(shù)法,利用導(dǎo)數(shù)求函數(shù)的最值,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2).【解析】(1)根據(jù),列方程組即可求解數(shù)列的通項(xiàng)公式,根據(jù)可求數(shù)列的通項(xiàng)公式;(2)化簡(jiǎn),利用裂項(xiàng)相消法求該數(shù)列前n項(xiàng)和.【小問(wèn)1詳解】設(shè)等差數(shù)列公差為d,∵,∴,∵公差,∴.由得,即,∴數(shù)列是首項(xiàng)為,公比為2的等比數(shù)列,∴;【小問(wèn)2詳解】∵,∴,.18、(1)答案見解析(2)證明見解析【解析】(1)由題意得,然后對(duì)其求導(dǎo),再分,兩種情況討論導(dǎo)數(shù)的正負(fù),從而可求出函數(shù)的單調(diào)區(qū)間,(2)由(1)結(jié)合零點(diǎn)存在性定理可得在和上各有一個(gè)零點(diǎn),且是的兩個(gè)極值點(diǎn),再將極值點(diǎn)代入導(dǎo)函數(shù)中化簡(jiǎn)結(jié)合已知可得,,從而將要證的結(jié)論轉(zhuǎn)化為證,令,再次轉(zhuǎn)化為利用導(dǎo)數(shù)求的最小值大于零即可【小問(wèn)1詳解】由,得,則,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),令.當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.綜上,當(dāng)時(shí),的增區(qū)間為,無(wú)減區(qū)間當(dāng)時(shí),的增區(qū)間為,減區(qū)間為小問(wèn)2詳解】由(1)知若存在兩個(gè)極值點(diǎn),則,且,且注意到,所以在和上各有一個(gè)零點(diǎn),且時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以是的兩個(gè)極值點(diǎn).,因?yàn)?,所以,所以,所以,即,所以而,所以,所以,要證,即要證即要證:因?yàn)?,所以所以,即要證:即要證:令,即要證:即要證:令當(dāng)時(shí),,所以在上單調(diào)增所以結(jié)論得證.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查導(dǎo)數(shù)的應(yīng)用,考查利用求函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵是將兩個(gè)極值點(diǎn)代入導(dǎo)函數(shù)中化簡(jiǎn)后,將問(wèn)題轉(zhuǎn)化為證明成立,換元后構(gòu)造函數(shù),再利用導(dǎo)數(shù)證明,考查數(shù)學(xué)轉(zhuǎn)化思想和計(jì)算能力,屬于較難題19、(1);(2).【解析】(1)解一元二次不等式可得命題p,q所對(duì)集合,再求交集作答.(2)求出命題q所對(duì)集合,再利用集合的包含關(guān)系列式計(jì)算作答.【小問(wèn)1詳解】解不等式得:,則命題p所對(duì)集合,當(dāng)時(shí),解不等式得:,則命題q所對(duì)集合,由p且q為真命題,則,所以實(shí)數(shù)x的取值范圍是.【小問(wèn)2詳解】解不等式得:,則命題q所對(duì)集合,因p是q的充分條件,則,于是得,解得,所以實(shí)數(shù)m的取值范圍是.20、(1)(2)【解析】(1)直接利用兩點(diǎn)式寫出直線的方程;(2)先求出直線的斜率,由點(diǎn)斜式寫出直線的方程.【小問(wèn)1詳解】直線經(jīng)過(guò),兩點(diǎn),由兩點(diǎn)式得直線的方程為.【小問(wèn)2詳解】與直線垂直直線的斜率為由點(diǎn)斜式得直線的方程為.21、(1);(2)【解析】(1)根據(jù)條件列公差與公比方程組,解得結(jié)果,代入等差數(shù)列通項(xiàng)公式即可;(2)根據(jù)等比數(shù)列求和公式直接求解.【詳解】(1)設(shè)等差數(shù)列公差為,正項(xiàng)等比數(shù)列公比為,因?yàn)椋砸虼?;?)數(shù)列的前n項(xiàng)和【點(diǎn)睛】本題考查等差數(shù)列以及等比數(shù)列通項(xiàng)公式、等比數(shù)列求和公式,考查基本分析求解能力,屬基礎(chǔ)題.22、(1)0.08,150;(2)88%;(3)18;(4)51.【解析】頻率分布直方圖以面積的形式反映數(shù)據(jù)落在各小組內(nèi)的頻率大小,所以計(jì)算面積之比即為所求小組的頻率.可用此方法計(jì)算(1),(2),由公式直接計(jì)算可得(1)中樣本容量;根據(jù)(2)問(wèn)中的達(dá)標(biāo)率,可計(jì)算不達(dá)標(biāo)率,從而求出不達(dá)標(biāo)人數(shù),可得(3);單
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026云南楊善洲干部學(xué)院招聘城鎮(zhèn)公益性崗位人員1人備考題庫(kù)參考答案詳解
- 廣東2025年廣東海洋大學(xué)招聘非教學(xué)崗合同制工作人員5人(第三批)筆試歷年參考題庫(kù)附帶答案詳解
- 宿州2025年安徽宿州碭山縣人民醫(yī)院招聘120隨車醫(yī)生筆試歷年參考題庫(kù)附帶答案詳解
- 2026東風(fēng)越野車有限公司招聘14人備考題庫(kù)(湖北)及參考答案詳解
- 咸陽(yáng)2025年陜西咸陽(yáng)市事業(yè)單位招聘碩士研究生52人筆試歷年參考題庫(kù)附帶答案詳解
- 2026四川西昌市人民醫(yī)院招聘8人備考題庫(kù)完整答案詳解
- 2026云南昭通市水富市文化館城鎮(zhèn)公益性崗位人員招聘1人備考題庫(kù)及參考答案詳解一套
- 2025山東省交通規(guī)劃設(shè)計(jì)院集團(tuán)有限公司下半年招聘6人備考題庫(kù)及一套完整答案詳解
- 2025福建泉州市豐澤區(qū)高新產(chǎn)業(yè)園區(qū)管理委員會(huì)招聘編外工作人員1人備考題庫(kù)及一套參考答案詳解
- 2026上半年貴州事業(yè)單位聯(lián)考人民檢察院招聘1人備考題庫(kù)及答案詳解(易錯(cuò)題)
- 2025學(xué)年度人教PEP五年級(jí)英語(yǔ)上冊(cè)期末模擬考試試卷(含答案含聽力原文)
- 醫(yī)院醫(yī)院醫(yī)院后勤管理
- 2025年岐黃天使中醫(yī)課后試題及答案
- 肺癌術(shù)后呼吸功能鍛煉指導(dǎo)
- 保障供貨協(xié)議書
- 2025年中國(guó)糖尿病腎臟病基層管理指南(全文)
- 顱內(nèi)腫瘤切除術(shù)手術(shù)配合
- CRRT患者體位管理與并發(fā)癥預(yù)防方案
- 財(cái)政評(píng)審應(yīng)急預(yù)案
- 超市食品安全培訓(xùn)記錄課件
- 【語(yǔ)文】湖北省武漢市光谷第二小學(xué)小學(xué)一年級(jí)上冊(cè)期末試題
評(píng)論
0/150
提交評(píng)論