【《第二型曲面積分》課堂教學(xué)中思政元素應(yīng)用案例分析3200字(論文)】_第1頁
【《第二型曲面積分》課堂教學(xué)中思政元素應(yīng)用案例分析3200字(論文)】_第2頁
【《第二型曲面積分》課堂教學(xué)中思政元素應(yīng)用案例分析3200字(論文)】_第3頁
【《第二型曲面積分》課堂教學(xué)中思政元素應(yīng)用案例分析3200字(論文)】_第4頁
【《第二型曲面積分》課堂教學(xué)中思政元素應(yīng)用案例分析3200字(論文)】_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

3本案例通過引入古代都江堰和現(xiàn)代大壩工程來展開對第二型曲面積分定義的探討,同時(shí)講授德國數(shù)學(xué)家莫比烏斯的事跡,在教學(xué)過程中達(dá)到思政育人的目的。表3-2《第二型曲面積分》思政案例設(shè)計(jì)一、授課內(nèi)容課程名稱數(shù)學(xué)分析所屬學(xué)校廣西師范大學(xué)授課章節(jié)第二十二章第二節(jié)《第二型曲面積分》授課對象數(shù)學(xué)類專業(yè)教學(xué)課時(shí)2課時(shí)使用教材數(shù)學(xué)分析(第四版)華東師范大學(xué)數(shù)學(xué)系二、學(xué)情分析學(xué)生知識經(jīng)驗(yàn)分析學(xué)生前面已經(jīng)學(xué)習(xí)了《第一型曲面積分》,對曲面積分的概念和計(jì)算有了初步的了解。學(xué)生學(xué)習(xí)能力分析學(xué)生已經(jīng)預(yù)習(xí)了第二型曲面積分的概念,但是深入了解和相關(guān)應(yīng)用任需教師的引導(dǎo)、講解和幫助.學(xué)生思想狀況分析1.曲面的側(cè)和第二型曲面積分涉及空間想象,內(nèi)容有些抽象,學(xué)生學(xué)習(xí)其有一定的難度,可能會(huì)導(dǎo)致學(xué)生產(chǎn)生畏難心理;2.學(xué)生對所學(xué)內(nèi)容大多停留在初步了解和應(yīng)用,沒有領(lǐng)悟到里面所蘊(yùn)含的抽象思維和邏輯思想;3.學(xué)生的求知欲不高,面對疑惑缺乏探究精神,在思想覺悟?qū)哟紊线€需進(jìn)一步提高.三、教學(xué)內(nèi)容課堂教學(xué)目標(biāo)1.理解曲面的側(cè)和第二型曲面積分的定義,掌握第二型曲面積分的計(jì)算,學(xué)會(huì)應(yīng)用第二型曲面積分解決問題;2.掌握推導(dǎo)過程所運(yùn)用的積分思想;3.增強(qiáng)學(xué)生民族自豪感和民族責(zé)任感,激勵(lì)學(xué)生更加努力學(xué)習(xí)。教學(xué)重點(diǎn)和難點(diǎn)重點(diǎn):了解曲面的側(cè),理解第二型曲面積分的定義,掌握第二型曲面積分的計(jì)算;難點(diǎn):理解第二型曲面積分的定義的推導(dǎo)過程。思政資源1.古代大壩的建設(shè)與現(xiàn)代大壩的建設(shè),展示中國人民的智慧結(jié)晶;2.為自己作為中華兒女驕傲,加深愛國情懷和民族責(zé)任感。3.通過數(shù)學(xué)家莫比烏斯的故事,提高數(shù)學(xué)文化素養(yǎng);4.推導(dǎo)第二型曲面積分定義的過程所體現(xiàn)出來的人生哲學(xué)道理,目標(biāo)和夢想都很大,但是把它們分成一個(gè)個(gè)小目標(biāo)去完成,終有一天,大目標(biāo)和大夢想也能夠?qū)崿F(xiàn)。四、教學(xué)方法與手段教學(xué)方法本節(jié)課從學(xué)生自身實(shí)際情況出發(fā),以學(xué)生為主體和教師為主導(dǎo)相結(jié)合而設(shè)計(jì)的,采用講授和引導(dǎo)的教學(xué)方法.教學(xué)手段運(yùn)用多媒體與板書相結(jié)合.五、教學(xué)過程設(shè)計(jì)(第0-3分鐘)課程教學(xué)內(nèi)容設(shè)計(jì)環(huán)節(jié)一:創(chuàng)設(shè)情境1.古有蜀郡太守李冰父子主持修建的都江堰大壩(如圖4-1),今有聞名世界的中國三峽大壩(如圖4-2)。這些水利工程在面對自然災(zāi)害時(shí)起到巨大的作用,給當(dāng)?shù)厝嗣竦纳顜肀憷?。圖4-1都江堰圖4-2三峽大壩2.那同學(xué)們有沒有思考過這樣一些問題,當(dāng)大壩泄洪時(shí),在單位時(shí)間內(nèi)通過一曲面從壩的一側(cè)流向另一側(cè)河水的流量應(yīng)該如何計(jì)算呢REF_Ref12383\r\h[6]?如圖4-3的大壩泄洪。圖4-3大壩泄洪若想計(jì)算流量,則需要知道流速的方向和壩體所在曲面的方向。那如何確定一個(gè)曲面的方向呢?(第0-2分鐘)結(jié)合課程內(nèi)容融入【案例1——把古代大壩與現(xiàn)代大壩作為例子引入,不僅能夠讓抽象的第二型曲面積分概念增添一些色彩,激起同學(xué)們學(xué)習(xí)的欲望,還能讓同學(xué)們感受到古代人民智慧的偉大和祖國今天科技實(shí)力的強(qiáng)大,更加努力地去學(xué)習(xí),增強(qiáng)民族自豪感,提高民族責(zé)任感.】(第4-9分鐘)課程教學(xué)內(nèi)容設(shè)計(jì)環(huán)節(jié)二:探究發(fā)現(xiàn)要給一個(gè)曲面定向,首先要知道什么是曲面的側(cè)。曲面的側(cè)有兩種,一種是雙側(cè)曲面,另一種是單側(cè)曲面。設(shè)連通曲面上到處都有連續(xù)變動(dòng)的切平面(或法線),為曲面上的一點(diǎn),曲面在處的法線有兩個(gè)方向:當(dāng)取定其中一個(gè)指向?yàn)檎较驎r(shí),則另一個(gè)指向就是負(fù)方向。設(shè)為上任一點(diǎn),為上任一經(jīng)過點(diǎn),且不超出邊界的閉曲線REF_Ref9672\r\h[4].又設(shè)為動(dòng)點(diǎn),它在處與有相同的法線方向,且有如下特性:當(dāng)從出發(fā)沿連續(xù)移動(dòng),這時(shí)作為曲面上的點(diǎn),它的法線方向也連續(xù)地變動(dòng)。最后當(dāng)沿回到時(shí),若這時(shí)的法線方向仍與的法線方向相一致,則說這曲面是雙側(cè)曲面;若與的法線方向相反,則說是單側(cè)曲面REF_Ref9672\r\h[4]。在生活中,我們看到的曲面大多數(shù)都是雙側(cè)曲面,而關(guān)于單側(cè)曲面,最典型的莫過于莫比烏斯帶。在講解前,我們可以先來了解一下關(guān)于偉大的數(shù)學(xué)家莫比烏斯的故事。莫比烏斯帶是他在1858年發(fā)現(xiàn)的,那這個(gè)發(fā)現(xiàn)令莫比烏斯感到很神奇,那它神奇在什么地方呢?接下來讓我們來探究一下莫比烏斯帶的神奇之處。莫比烏斯帶的構(gòu)造:取一條形狀為矩形的長紙帶,把所在一側(cè)扭轉(zhuǎn)180°之后再與所在的另一側(cè)粘連在一起,此時(shí)和重合,和重合。接下來,若是沿著這個(gè)帶子上任一處為起點(diǎn)涂上一種顏色,我們發(fā)現(xiàn)可以不越過帶子的最外邊而將整條紙帶全部涂遍,好比一只蟲子可以爬遍整個(gè)曲面而不必跨過它的邊緣。若是用一把剪刀沿紙帶的中央將其剪開,紙帶沒有被分成兩個(gè)紙帶,反而是變成了一個(gè)兩倍長的紙圈。在了解曲面的側(cè)的兩種類型后,我們要知道一般由所表示的曲面都是雙側(cè)曲面,當(dāng)以曲面的法線正方向與軸正方向的夾角為銳角的一側(cè)(也稱為上側(cè))為正側(cè)時(shí),則另一側(cè)(也稱下側(cè))為負(fù)側(cè)。若為封閉的曲面,一般規(guī)定曲面的外側(cè)為正側(cè),內(nèi)側(cè)為負(fù)側(cè)REF_Ref9672\r\h[4].(第6-8分鐘)結(jié)合課程內(nèi)容融入【案例2——在講解單側(cè)曲面時(shí)為同學(xué)們科普關(guān)于德國數(shù)學(xué)家莫比烏斯的事跡,不僅能夠提高同學(xué)們上課積極性,還能夠提高他們的數(shù)學(xué)文化素養(yǎng),擴(kuò)大知識面?!浚ǖ?0-24分鐘)課程教學(xué)內(nèi)容設(shè)計(jì)環(huán)節(jié)三:概括定義先假設(shè)曲面為大壩的曲面,而流體的流速為,其中,,為所討論范圍上的連續(xù)函數(shù),求單位時(shí)間內(nèi)流經(jīng)曲面的總流量REF_Ref9672\r\h[4].設(shè)在曲面的正側(cè)上任一點(diǎn)處的單位法向量為.這里,,是,,的函數(shù),則單位時(shí)間內(nèi)流經(jīng)小曲面的流量近似地等于其中是上任意取定的一點(diǎn),,,是的正側(cè)上法線的方向余弦,又,,分別是的正側(cè)在坐標(biāo)面,和上投影區(qū)域的面積的近似值,并分別記作,,,于是單位時(shí)間內(nèi)由小曲面的負(fù)側(cè)流向正側(cè)的流量也近似地等于,故單位時(shí)間內(nèi)由曲面的負(fù)側(cè)流向正側(cè)的總流量這種與曲面的側(cè)有關(guān)的和式極限就是所要討論的第二型曲面積分REF_Ref9672\r\h[4].定義設(shè),,為定義在雙側(cè)曲面上的函數(shù),在所指定的一側(cè)作分割,它把分為個(gè)小曲面,,,,分割的細(xì)度,以,,分別表示在三個(gè)坐標(biāo)面上的投影區(qū)域的面積,它們的符號由的方向來確定REF_Ref9672\r\h[4].若的法線正向與軸正向成銳角時(shí),在平面的投影區(qū)域的面積為正REF_Ref9672\r\h[4].反之,若法線正向與軸正向成鈍角時(shí),它在平面的投影區(qū)域的面積為負(fù).在各個(gè)小曲面上任取一點(diǎn),若存在,且與曲面的分割和在上的取法無關(guān),則稱此極限為函數(shù),,在曲面所指定的一側(cè)上的第二型曲面積分REF_Ref9672\r\h[4],記作或.故此定義,該流體以速度在單位時(shí)間內(nèi)從曲面的負(fù)側(cè)流向正側(cè)的總流量.(第15-20分鐘)結(jié)合課程內(nèi)容融入【案例3——在推導(dǎo)出第二型曲面積分的定義時(shí)用到了“先分割、再求近似、接著求和、后取極限”的積分思想,讓同學(xué)們學(xué)會(huì)了在遇到不規(guī)則圖形的面積問題時(shí)首先用積分思想去解決,從而慢慢養(yǎng)成用數(shù)學(xué)的思想去考慮事情,用數(shù)學(xué)的方法去解決問題,提高自己的邏輯能力。】(第25-37分鐘)課程教學(xué)內(nèi)容設(shè)計(jì)環(huán)節(jié)四:初步運(yùn)用定理1設(shè)是定義在光滑曲面,上的連續(xù)函數(shù),以的上側(cè)為正側(cè)(這時(shí)的法線方向與軸正向成銳角),則有.證明:根據(jù)第二型曲面積分的定義可知,這里REF_Ref9672\r\h[4].顯然由立刻可推得REF_Ref9672\r\h[4].由于在上連續(xù),在上連續(xù)(曲面光滑),根據(jù)復(fù)合函數(shù)的連續(xù)性,也是上的連續(xù)函數(shù)REF_Ref9672\r\h[4].由二重積分的定義.所以.同理,若在光滑曲面,上連續(xù)時(shí),有,這里是以的法線方向與軸的正向成銳角的那一側(cè)為正側(cè)REF_Ref9672\r\h[4].若在光滑曲面,上連續(xù)時(shí),有,這里是以的法線方向與軸的正向成銳角的那一側(cè)為正側(cè)REF_Ref9672\r\h[4].定理2設(shè)為光滑曲面,正側(cè)法向量為,,,在上連續(xù),則REF_Ref9672\r\h[4].定理3設(shè),,是定義在光滑曲面:,上的連續(xù)函數(shù),以的上側(cè)為正側(cè),則REF_Ref9672\r\h[4].證明:由于,,,,因此REF_Ref9672\r\h[4].例1計(jì)算,其中,取上側(cè)REF_Ref9672\r\h[4].解:,,,其中由于是的奇函數(shù),;又因?yàn)閷ΨQ性,故有REF_Ref9672\r\h[4].(第30-33分鐘)結(jié)合課程內(nèi)容融入【案例4——回顧得到第二型曲面積分的定義的過程,會(huì)發(fā)現(xiàn)實(shí)現(xiàn)自己的夢想和目標(biāo)就需要這樣子做,先把它分成一個(gè)個(gè)小目標(biāo)和小規(guī)劃,然后努力去完成一個(gè)個(gè)這樣子的小目標(biāo),相信會(huì)在未來的某一天內(nèi)心那個(gè)大的目標(biāo)和夢想就會(huì)實(shí)現(xiàn).同時(shí),也像我們

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論