黑龍江省哈爾濱市南崗區(qū)三中2026屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第1頁(yè)
黑龍江省哈爾濱市南崗區(qū)三中2026屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第2頁(yè)
黑龍江省哈爾濱市南崗區(qū)三中2026屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第3頁(yè)
黑龍江省哈爾濱市南崗區(qū)三中2026屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第4頁(yè)
黑龍江省哈爾濱市南崗區(qū)三中2026屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江省哈爾濱市南崗區(qū)三中2026屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.經(jīng)過(guò)點(diǎn)作圓的弦,使點(diǎn)為弦的中點(diǎn),則弦所在直線的方程為A. B.C. D.2.函數(shù)在(0,e]上的最大值為()A.-1 B.1C.0 D.e3.設(shè)命題,,則為().A., B.,C., D.,4.函數(shù)在單調(diào)遞增的一個(gè)必要不充分條件是()A. B.C. D.5.若函數(shù),(其中,)的最小正周期是,且,則()A. B.C. D.6.已知三棱錐O-ABC,點(diǎn)M,N分別為AB,OC的中點(diǎn),且,用表示,則等于()A. B.C. D.7.若函數(shù),滿足且,則()A.1 B.2C.3 D.48.直線分別與軸,軸交于,兩點(diǎn),點(diǎn)在圓上,則面積的取值范圍是A. B.C. D.9.已知橢圓的長(zhǎng)軸長(zhǎng),短軸長(zhǎng),焦距長(zhǎng)成等比數(shù)列,則橢圓離心率為()A. B.C. D.10.直線是雙曲線的一條漸近線,,分別是雙曲線左、右焦點(diǎn),P是雙曲線上一點(diǎn),且,則()A.2 B.6C.8 D.1011.已知實(shí)數(shù),,則下列不等式恒成立的是()A. B.C. D.12.已知是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知正方形邊長(zhǎng)為,長(zhǎng)方形中,,平面與平面互相垂直,是線段的中點(diǎn),則異面直線與所成角的余弦值為_(kāi)_____14.已知數(shù)列滿足,則其通項(xiàng)公式________15.已知離心率為,且對(duì)稱軸都在坐標(biāo)軸上的雙曲線C過(guò)點(diǎn),過(guò)雙曲線C上任意一點(diǎn)P,向雙曲線C的兩條漸近線分別引垂線,垂足分別是A,B,點(diǎn)O為坐標(biāo)原點(diǎn),則四邊形OAPB的面積為_(kāi)_____16.復(fù)數(shù)的實(shí)部為_(kāi)________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,正三棱柱的側(cè)棱長(zhǎng)為,底面邊長(zhǎng)為,點(diǎn)為的中點(diǎn),點(diǎn)在直線上,且(1)證明:面;(2)求平面和平面夾角的余弦值18.(12分)如圖,在三棱錐中,平面平面,,都是等腰直角三角形,,,,分別為,的中點(diǎn).(1)求證:平面;(2)求證:平面.19.(12分)在中,是的中點(diǎn),,現(xiàn)將該平行四邊形沿對(duì)角線折成直二面角,如圖:(1)求證:;(2)求二面角的余弦值.20.(12分)已知橢圓的長(zhǎng)軸長(zhǎng)是,以其短軸為直徑的圓過(guò)橢圓的左右焦點(diǎn),.(1)求橢圓E的方程;(2)過(guò)橢圓E左焦點(diǎn)作不與坐標(biāo)軸垂直的直線,交橢圓于M,N兩點(diǎn),線段MN的垂直平分線與y軸負(fù)半軸交于點(diǎn)Q,若點(diǎn)Q的縱坐標(biāo)的最大值是,求面積的取值范圍.21.(12分)已知A(-3,0),B(3,0),四邊形AMBN的對(duì)角線交于點(diǎn)D(1,0),kMA與kMB的等比中項(xiàng)為,直線AM,NB相交于點(diǎn)P.(1)求點(diǎn)M的軌跡C的方程;(2)若點(diǎn)N也在C上,點(diǎn)P是否在定直線上?如果是,求出該直線,如果不是,請(qǐng)說(shuō)明理由.22.(10分)已知為坐標(biāo)原點(diǎn),橢圓的左右焦點(diǎn)分別為,,為橢圓的上頂點(diǎn),以為圓心且過(guò)的圓與直線相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知直線交橢圓于兩點(diǎn).(ⅰ)若直線的斜率等于,求面積的最大值;(ⅱ)若,點(diǎn)在上,.證明:存在定點(diǎn),使得為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由題知為弦AB的中點(diǎn),可得直線與過(guò)圓心和點(diǎn)的直線垂直,可求的斜率,然后用點(diǎn)斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,直線的斜率,直線的點(diǎn)斜式方程,屬于基礎(chǔ)題2、A【解析】對(duì)函數(shù)求導(dǎo),然后求出函數(shù)的單調(diào)區(qū)間,從而可求出函數(shù)的最大值【詳解】由,得,當(dāng)時(shí),,當(dāng),,所以在上單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,故選:A3、B【解析】根據(jù)全稱命題和特稱命題互為否定,即可得到結(jié)果.【詳解】因?yàn)槊},,所以為,.故選:B.4、D【解析】求出導(dǎo)函數(shù),由于函數(shù)在區(qū)間單調(diào)遞增,可得在區(qū)間上恒成立,求出的范圍,再根據(jù)充分必要條件的定義即可判斷得解.【詳解】由題得,函數(shù)在區(qū)間單調(diào)遞增,在區(qū)間上恒成立,而在區(qū)間上單調(diào)遞減,選項(xiàng)中只有是的必要不充分條件.選項(xiàng)AC是的充分不必要條件,選項(xiàng)B是充要條件.故選:D5、B【解析】利用余弦型函數(shù)的周期公式可求得的值,由結(jié)合的取值范圍可求得的值.【詳解】由已知可得,且,因此,.故選:B.6、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運(yùn)算可得結(jié)果.【詳解】.故選:D7、C【解析】先取,得與之間的關(guān)系,然后根據(jù)導(dǎo)數(shù)的運(yùn)算直接求導(dǎo),代值可得.【詳解】取,則有,即,又因?yàn)樗裕?,所?故選:C8、A【解析】分析:先求出A,B兩點(diǎn)坐標(biāo)得到再計(jì)算圓心到直線距離,得到點(diǎn)P到直線距離范圍,由面積公式計(jì)算即可詳解:直線分別與軸,軸交于,兩點(diǎn),則點(diǎn)P在圓上圓心為(2,0),則圓心到直線距離故點(diǎn)P到直線的距離的范圍為則故答案選A.點(diǎn)睛:本題主要考查直線與圓,考查了點(diǎn)到直線的距離公式,三角形的面積公式,屬于中檔題9、A【解析】由題意,,結(jié)合,求解即可【詳解】∵橢圓的長(zhǎng)軸長(zhǎng),短軸長(zhǎng),焦距長(zhǎng)成等比數(shù)列∴∴又∵∴∴,即∴e=又在橢圓e>0∴e=故選:A10、C【解析】根據(jù)漸近線可求出a,再由雙曲線定義可求解.【詳解】因?yàn)橹本€是雙曲線的一條漸近線,所以,,又或,或(舍去),故選:C11、C【解析】根據(jù)不等式性質(zhì)和作差法判斷大小依次判斷每個(gè)選項(xiàng)得到答案.【詳解】當(dāng)時(shí),不等式不成立,錯(cuò)誤;,故錯(cuò)誤正確;當(dāng)時(shí),不等式不成立,錯(cuò)誤;故選:.【點(diǎn)睛】本題考查了不等式的性質(zhì),作差法判斷大小,意在考查學(xué)生對(duì)于不等式知識(shí)的綜合應(yīng)用.12、D【解析】根據(jù)復(fù)數(shù)的幾何意義即可確定復(fù)數(shù)所在象限【詳解】復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第四象限故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立如圖所示的空間直角坐標(biāo)系,求出,后可求異面直線所成角的余弦值.【詳解】長(zhǎng)方形可得,因?yàn)槠矫媾c平面互相垂直,平面平面,平面,故平面,故可建立如圖所示的空間直角坐標(biāo)系,則,故,,故.故答案為:14、【解析】利用累加法即可求出數(shù)列的通項(xiàng)公式.【詳解】因?yàn)?,所以,所以,,,…,,把以上個(gè)式子相加,得,即,所以.故答案為:.15、2【解析】由離心率為,∴雙曲線為等軸雙曲線,設(shè)雙曲線方程為,可得雙曲線方程為,設(shè),則到兩漸近線的距離為,,從而可求四邊形的面積【詳解】由離心率為,∴雙曲線為等軸雙曲線,設(shè)雙曲線方程為,又雙曲線過(guò)點(diǎn),,∴,故雙曲線方程為,∴漸近線方程為,設(shè),則到兩漸近線的距離為,,且,∵漸近線方程為,∴四邊形為矩形,∴四邊形的面積為故答案為:216、【解析】復(fù)數(shù),其實(shí)部為.考點(diǎn):復(fù)數(shù)的乘法運(yùn)算、實(shí)部.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)證明平面,可得出,再由結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得結(jié)果.【小問(wèn)1詳解】證明:正中,點(diǎn)為的中點(diǎn),,因?yàn)槠矫?,平面,則,,則平面,平面,則,又,且,平面.【小問(wèn)2詳解】解:因?yàn)椋渣c(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、、,設(shè)平面的法向量為,,,則,取,可得,平面,平面,則,又因?yàn)椋?,故平面,所以,平面的一個(gè)法向量為,則.因此,平面和平面夾角的余弦值為.18、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)由三角形的中位線定理可證得MN∥AB,再由線面垂直的判定定理可證得結(jié)論,(2)由已知可得AB⊥BC,VC⊥AC,再由已知結(jié)合面面垂直的性質(zhì)定理可得VC⊥平面ABC,從而有AB⊥VC,然后由線面垂直的判定定理可證得結(jié)論【小問(wèn)1詳解】證明:∵M(jìn),N分別為VA,VB的中點(diǎn),∴MN∥AB,∵AB?平面CMN,MN?平面CMN,∴AB∥平面CMN【小問(wèn)2詳解】證明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB?平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC19、(1)證明見(jiàn)解析(2)【解析】(1)先求出BD,通過(guò)勾股定理的逆定理得,再由面面垂直的性質(zhì)得線面垂直,從而得線線垂直;(2)作出二面角,然后再解直角三形即可.【小問(wèn)1詳解】在中,,,由余弦定理有:,∴,∴,即.又∵二面角是直二面角,平面ABD平面BCD=BD,AB?平面ABD,∴AB⊥平面BCD.又CD?平面BCD,∴AB⊥CD.【小問(wèn)2詳解】因?yàn)辄c(diǎn)是的中點(diǎn),在中,由(1)易知,.過(guò)點(diǎn)作垂直的延長(zhǎng)線于,再連接.由(1)有AB⊥平面BCD,又平面BCD,所以,又,平面,平面,且,所以平面,又平面,所以,因此的大小即二面角的大小.而在中有,,可得,所以,所以.所以二面角的余弦值是.20、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合列式計(jì)算即可作答.(2)設(shè)出直線MN的方程,與橢圓方程聯(lián)立并結(jié)合已知求出m的范圍,再借助韋達(dá)定理求出面積函數(shù),利用函數(shù)單調(diào)性計(jì)算作答.【小問(wèn)1詳解】令橢圓半焦距為c,依題意,,解得,所以橢圓E的方程為.【小問(wèn)2詳解】由(1)知,橢圓E左焦點(diǎn)為,設(shè)過(guò)橢圓E左焦點(diǎn)的直線為(存在且不為0),由消去x得,,設(shè),則,線段的中點(diǎn)為,因此線段的垂直平分線為,由得的縱坐標(biāo)為,依題意,且,解得,由(1)知,,,令,在上單調(diào)遞減,當(dāng),即時(shí),,當(dāng),即時(shí),,所以面積的取值范圍.【點(diǎn)睛】結(jié)論點(diǎn)睛:過(guò)定點(diǎn)的直線l:y=kx+b交圓錐曲線于點(diǎn),,則面積;過(guò)定點(diǎn)直線l:x=ty+a交圓錐曲線于點(diǎn),,則面積21、(1);(2)點(diǎn)P在定直線x=9上.理由見(jiàn)解析.【解析】(1)設(shè)點(diǎn),根據(jù)兩點(diǎn)坐標(biāo)距離公式和等比數(shù)列的等比中項(xiàng)的應(yīng)用列出方程,整理方程即可;(2)設(shè)直線MN方程為:,點(diǎn),聯(lián)立雙曲線方程消去x得到關(guān)于y的一元二次方程,根據(jù)韋達(dá)定理寫(xiě)出,利用兩點(diǎn)坐標(biāo)和直線的點(diǎn)斜式方程寫(xiě)出直線PA、PB,聯(lián)立方程組,解方程組即可.【小問(wèn)1詳解】設(shè)點(diǎn),則,又,所以,整理,得,即軌跡M的方程C為:;【小問(wèn)2詳解】點(diǎn)P在定直線上.由(1)知,曲線C方程為:,直線MN過(guò)點(diǎn)D(1,0)若直線MN斜率不存在,則,得,不符合題意;設(shè)直線MN方程為:,點(diǎn),則,消去x,得,有,,,,所以直線PA方程為:,直線PB方程為:,所以點(diǎn)P的坐標(biāo)為方程組的解,有,即,整理,得,解得,即點(diǎn)P在定直線上.22、(1);(2)(?。?;(ⅱ).【解析】(1)求出后可得橢圓的標(biāo)準(zhǔn)方程.(2)(?。┰O(shè)直線的方程為:,,聯(lián)立直線方程和橢圓方程,利用韋達(dá)定理、弦長(zhǎng)公式可求面積表達(dá)式,利用基本不等式可求面積的最大值.(ⅱ)利用韋達(dá)定理化簡(jiǎn)可得,從而可得的軌跡為圓,故可證存在定點(diǎn),使得為定值.【詳解】(1)由題意知:,,又,則以為圓心且過(guò)的圓的半徑為,故,所以橢圓的標(biāo)準(zhǔn)方程為:.(2)(?。┰O(shè)直線的方程為:,將代入得:,所以且,故.又,點(diǎn)到直線的距離,所以,等號(hào)當(dāng)僅當(dāng)時(shí)取,即當(dāng)時(shí),的面積取最大值為.(ⅱ)顯然直線的斜率一

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論