2026屆江蘇省南通市海安縣高一數(shù)學第一學期期末達標檢測模擬試題含解析_第1頁
2026屆江蘇省南通市海安縣高一數(shù)學第一學期期末達標檢測模擬試題含解析_第2頁
2026屆江蘇省南通市海安縣高一數(shù)學第一學期期末達標檢測模擬試題含解析_第3頁
2026屆江蘇省南通市海安縣高一數(shù)學第一學期期末達標檢測模擬試題含解析_第4頁
2026屆江蘇省南通市海安縣高一數(shù)學第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆江蘇省南通市海安縣高一數(shù)學第一學期期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限2.把11化為二進制數(shù)為A. B.C. D.3.已知,,,則A. B.C. D.4.函數(shù),對任意的非零實數(shù),關(guān)于的方程的解集不可能是A B.C. D.5.設(shè)函數(shù)的最小值為-1,則實數(shù)的取值范圍是A. B.C. D.6.將函數(shù)的圖像向右平移個單位后得到的圖像關(guān)于直線對稱,則的最小正值為A. B.C. D.7.的值是A.0 B.C. D.18.已知集合,則A. B.C.( D.)9.如果命題“使得”是假命題,那么實數(shù)的取值范圍是()A. B.C. D.10.已知函數(shù),則該函數(shù)的零點位于區(qū)間()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.______.12.已知冪函數(shù)的定義域為,且單調(diào)遞減,則________.13.已知為直角三角形的三邊長,為斜邊長,若點在直線上,則的最小值為__________14.在日常生活中,我們會看到如圖所示的情境,兩個人共提一個行李包.假設(shè)行李包所受重力為G,作用在行李包上的兩個拉力分別為,,且,與的夾角為.給出以下結(jié)論:①越大越費力,越小越省力;②的范圍為;③當時,;④當時,.其中正確結(jié)論的序號是______.15.設(shè)函數(shù),若函數(shù)滿足對,都有,則實數(shù)的取值范圍是_______.16.若不等式對一切恒成立,則a的取值范圍是______________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù),(1)根據(jù)定義證明在區(qū)間上單調(diào)遞增;(2)判斷并證明的奇偶性;(3)解關(guān)于x的不等式.18.已知函數(shù),.(1)解不等式:;(2)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;(3)若函數(shù)的反函數(shù)為,且,其中為奇函數(shù),為偶函數(shù),試比較與的大小.19.設(shè)函數(shù).(1)求函數(shù)在上的最小值;(2)若方程在上有四個不相等實根,求的范圍.20.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;(2)若當時,求的最大值和最小值及相應(yīng)的取值.21.化簡求值:(1);(2).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)題意,由于,則說明正弦值和余弦值都是正數(shù),因此可知角所在的象限是第一象限,故選A.考點:三角函數(shù)的定義點評:主要是考查了三角函數(shù)的定義的運用,屬于基礎(chǔ)題2、A【解析】11÷2=5…15÷2=2…12÷2=1…01÷2=0…1故11(10)=1011(2)故選A.3、D【解析】容易看出,,從而可得出a,b,c的大小關(guān)系.【詳解】,,;.故選D.【點睛】考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,以及增函數(shù)和減函數(shù)的定義,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關(guān)系.4、D【解析】由題意得函數(shù)圖象的對稱軸為設(shè)方程的解為,則必有,由圖象可得是平行于x軸的直線,它們與函數(shù)的圖象必有交點,由函數(shù)圖象的對稱性得的兩個解要關(guān)于直線對稱,故可得;同理方程的兩個解也要關(guān)于直線對稱,同理從而可得若關(guān)于的方程有一個正根,則方程有兩個不同的實數(shù)根;若關(guān)于的方程有兩個正根,則方程有四個不同的實數(shù)根綜合以上情況可得,關(guān)于的方程的解集不可能是.選D非選擇題5、C【解析】當時,為增函數(shù),最小值為,故當時,,分離參數(shù)得,函數(shù)開口向下,且對稱軸為,故在遞增,,即.考點:分段函數(shù)的最值.【思路點晴】本題主要考查分段函數(shù)值域問題,由于函數(shù)的最小值為,所以要在兩段函數(shù)圖象都要討論最小值.首先考慮沒有參數(shù)的一段,當時,為增函數(shù),最小值為.由于這一段函數(shù)值域已經(jīng)包括了最小值,故當時,值域應(yīng)該不小于,分離常數(shù)后利用二次函數(shù)圖象與性質(zhì)可求得參數(shù)的取值范圍.6、C【解析】函數(shù),將其圖像向右平移個單位后得到∵這個圖像關(guān)于直線對稱∴,即∴當時取最小正值為故選C點睛:三角函數(shù)的圖象變換,提倡“先平移,后伸縮”,但“先伸縮,后平移”也常出現(xiàn)在題目中,所以也必須熟練掌握.無論是哪種變形,切記每一個變換總是對字母而言.7、B【解析】利用誘導公式和和差角公式直接求解.【詳解】故選:B8、C【解析】因為所以,故選.考點:1.集合的基本運算;2.簡單不等式的解法.9、B【解析】特稱命題是假命題,則該命題的否定為全稱命題且是真命題,然后根據(jù)即可求解.【詳解】依題意,命題“使得”是假命題,則該命題的否定為“”,且是真命題;所以,.故選:B10、B【解析】分別將選項中區(qū)間的端點代入,利用零點存在性定理判斷即可【詳解】由題,,,,所以,故選:B【點睛】本題考查利用零點存在性定理判斷零點所在區(qū)間,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】首先利用乘法將五進制化為十進制,再利用“倒序取余法”將十進制化為二進制即可.【詳解】,根據(jù)十進制化為二進制“倒序取余法”如下:可得.故答案為:【點睛】本題考查了進位制的轉(zhuǎn)化,在求解過程中,一般都是先把其它進制轉(zhuǎn)化為十進制,再用倒序取余法轉(zhuǎn)化為其它進制,屬于基礎(chǔ)題.12、【解析】根據(jù)冪函數(shù)的單調(diào)性,得到的范圍,再由其定義域,根據(jù),即可確定的值.【詳解】因為冪函數(shù)的定義域為,且單調(diào)遞減,所以,則,又,所以的所有可能取值為,,,當時,,其定義域為,不滿足題意;當時,,其定義域為,滿足題意;當時,,其定義域為,不滿足題意;所以.故答案為:13、4【解析】∵a,b,c為直角三角形中的三邊長,c為斜邊長,∴c=,又∵點M(m,n)在直線l:ax+by+2c=0上,∴m2+n2表示直線l上的點到原點距離的平方,∴m2+n2的最小值為原點到直線l距離的平方,由點到直線的距離公式可得d==2,∴m2+n2的最小值為d2=4,故答案為4.14、①④.【解析】根據(jù)為定值,求出,再對題目中的命題分析、判斷正誤即可.【詳解】解:對于①,由為定值,所以,解得;由題意知時,單調(diào)遞減,所以單調(diào)遞增,即越大越費力,越小越省力;①正確.對于②,由題意知,的取值范圍是,所以②錯誤.對于③,當時,,所以,③錯誤.對于④,當時,,所以,④正確.綜上知,正確結(jié)論的序號是①④.故答案為:①④.【點睛】此題考查平面向量數(shù)量積的應(yīng)用,考查分析問題的能力,屬于中檔題15、【解析】首先根據(jù)題意可得出函數(shù)在上單調(diào)遞增;然后根據(jù)分段函數(shù)單調(diào)性的判斷方法,同時結(jié)合二次函數(shù)的單調(diào)性即可求出答案.【詳解】因為函數(shù)滿足對,都有,所以函數(shù)在上單調(diào)遞增.當時,,此時滿足在上單調(diào)遞增,且;當時,,其對稱軸為,當時,上單調(diào)遞增,所以要滿足題意,需,即;當時,在上單調(diào)遞增,所以要滿足題意,需,即;當時,單調(diào)遞增,且滿足,所以滿足題意.綜上知,實數(shù)的取值范圍是.故答案為:.16、【解析】先討論時不恒成立,再根據(jù)二次函數(shù)的圖象開口方向、判別式進行求解.【詳解】當時,則化為(不恒成立,舍),當時,要使對一切恒成立,需,即,即a的取值范圍是.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)奇函數(shù),證明見解析(3)【解析】(1)根據(jù)函數(shù)單調(diào)性的定義,準確運算,即可求解;(2)根據(jù)函數(shù)奇偶性的定義,準確化簡,即可求解;(3)根據(jù)函數(shù)的奇偶性和單調(diào)性,把不等式轉(zhuǎn)化為,得到,即可求解【小問1詳解】證明:,且,則,因為,,,所以,即,所以在上單調(diào)遞增【小問2詳解】證明:由,即,解得,即的定義域為,對于任意,函數(shù),則,即,所以是奇函數(shù).【小問3詳解】解:由(1)知,函數(shù)在上單調(diào)遞增,又因為x是增函數(shù),所以是上的增函數(shù),由,可得,由,可得,因為奇函數(shù),所以,所以原不等式可化為,則,解得,所以原不等式的解集為18、(1)或;(2);(3)【解析】(1)根據(jù)二次不等式和對數(shù)不等式的解法求解即可得到所求;(2)由可得,故所求范圍即為函數(shù)在區(qū)間上的值域,根據(jù)換元法求出函數(shù)的值域即可;(3)根據(jù)題意可求出,進而得到和,于是可得大小關(guān)系【詳解】(1)由,得或,即或,解得,所以原不等式的解集為(2)令,得令,由,得,則,其中令,則在上單調(diào)遞增,所以,即,所以.故實數(shù)的取值范圍為(3)由題意得,即,因此,因為為奇函數(shù),為偶函數(shù),所以,解得,所以,,因此另法:,所以【點睛】(1)本題考查函數(shù)知識的綜合運用,解題時要注意函數(shù)、方程、不等式間的關(guān)系的應(yīng)用,根據(jù)條件及要求合理求解(2)解決函數(shù)零點問題時,可轉(zhuǎn)化為方程解得問題處理,也可利用分離變量的方法求解,轉(zhuǎn)化為求具體函數(shù)值域的問題,解題時注意轉(zhuǎn)化的合理性和等價性19、(1)見解析;(2)【解析】(1)將函數(shù)化簡為,令,則,求出對稱軸,對區(qū)間與對稱軸的位置關(guān)系進行分類討論求出最小值;(2)要滿足方程在上有四個不相等的實根,需滿足在上有兩個不等實根,列出相應(yīng)的不等式組,求解即可.【詳解】(1),令,則,對稱軸為:當即時,,當即時,,當時,,所以求函數(shù)在上的最小值;(2)要滿足方程在上有四個不相等的實根,需滿足在上有兩個不等零點,,解得.【點睛】本題考查動軸定區(qū)間分類討論二次函數(shù)最小值,正弦函數(shù)的單調(diào)性,二次函數(shù)的幾何性質(zhì),屬于中檔題.20、(1)最小正周期為,(2)最小值為-1,的值為,最大值為2,的值為【解析】(1)利用周期公式可得最小正周期,由的單調(diào)遞增區(qū)間可得的單調(diào)遞增區(qū)間;(2)由得,當,即時,函數(shù)取得最大值,當,即時,函數(shù)取得最小值可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論