版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2026屆山東省聊城市文苑中學(xué)數(shù)學(xué)高二上期末經(jīng)典模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)為坐標(biāo)原點(diǎn),直線與拋物線C:交于,兩點(diǎn),若,則的焦點(diǎn)坐標(biāo)為()A. B.C. D.2.已知函數(shù),那么的值為()A. B.C. D.3.下列函數(shù)求導(dǎo)運(yùn)算正確的個(gè)數(shù)為()①;②;③;④.A.1 B.2C.3 D.44.在中,若,,,則此三角形解的情況為()A.無解 B.兩解C.一解 D.解的個(gè)數(shù)不能確定5.?dāng)?shù)列1,6,15,28,45,...中的每一項(xiàng)都可用如圖所示的六邊形表示出來,故稱它們?yōu)榱呅螖?shù),那么第10個(gè)六邊形數(shù)為()A.153 B.190C.231 D.2766.某軟件研發(fā)公司對某軟件進(jìn)行升級(jí),主要是對軟件程序中的某序列重新編輯,編輯新序列為,它的第項(xiàng)為,若序列的所有項(xiàng)都是1,且,.記數(shù)列的前項(xiàng)和、前項(xiàng)積分別為,,若,則的最小值為()A.2 B.3C.4 D.57.設(shè),,,…,,,則()A. B.C. D.8.已知為虛數(shù)單位,復(fù)數(shù)是純虛數(shù),則()A B.4C.3 D.29.已知是橢圓右焦點(diǎn),點(diǎn)在橢圓上,線段與圓相切于點(diǎn),且,則橢圓的離心率等于()A. B.C. D.10.已知點(diǎn)O為坐標(biāo)原點(diǎn),拋物線C:的焦點(diǎn)為F,點(diǎn)T在拋物線C的準(zhǔn)線上,線段FT與拋物線C的交點(diǎn)為W,,則()A.1 B.C. D.11.在某次賽車中,名參賽選手的成績(單位:)全部介于到之間(包括和),將比賽成績分為五組:第一組,第二組,···,第五組,其頻率分布直方圖如圖所示.若成績在內(nèi)的選手可獲獎(jiǎng),則這名選手中獲獎(jiǎng)的人數(shù)為A. B.C. D.12.等差數(shù)列的前項(xiàng)和為,若,,則()A.12 B.18C.21 D.27二、填空題:本題共4小題,每小題5分,共20分。13.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的中心為原點(diǎn),焦點(diǎn),均在軸上,且,的面積為,則的標(biāo)準(zhǔn)方程為______14.如圖是一個(gè)邊長為2的正方體的平面展開圖,在這個(gè)正方體中,則下列說法中正確的序號(hào)是___________.①直線與直線垂直;②直線與直線相交;③直線與直線平行;④直線與直線異面;15.已知雙曲線過點(diǎn),且漸近線方程為,則該雙曲線的標(biāo)準(zhǔn)方程為____________________.16.如圖,在棱長為2的正方體中,E為BC的中點(diǎn),點(diǎn)P在線段上,分別記四棱錐,的體積為,,則的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,一個(gè)湖的邊界是圓心為的圓,湖的一側(cè)有一條直線型公路,湖上有橋(是圓的直徑).規(guī)劃在公路上選兩個(gè)點(diǎn)、,并修建兩段直線型道路、.規(guī)劃要求,線段、上的所有點(diǎn)到點(diǎn)的距離均不小于圓的半徑.已知點(diǎn)到直線的距離分別為和(為垂足),測得,,(單位:百米).(1)若道路與橋垂直,求道路的長;(2)在規(guī)劃要求下,點(diǎn)能否選在處?并說明理由.18.(12分)已知等比數(shù)列前3項(xiàng)和為(1)求的通項(xiàng)公式;(2)若對任意恒成立,求m的取值范圍19.(12分)已知(1)若函數(shù)在上有極值,求實(shí)數(shù)a的取值范圍;(2)已知方程有兩個(gè)不等實(shí)根,證明:(注:是自然對數(shù)的底數(shù))20.(12分)如圖,在正方體中,分別為,的中點(diǎn)(1)求證:平面平面;(2)求平面與平面所成銳二面角的余弦值21.(12分)設(shè)銳角三角形ABC的內(nèi)角A、B、C的對邊分別為a、b、c,.(1)求B的大?。?)若,,求b.22.(10分)“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務(wù)平臺(tái)對某市的網(wǎng)民在今年“雙十一”的網(wǎng)購情況進(jìn)行摸底調(diào)查,用隨機(jī)抽樣的方法抽取了100人,其消費(fèi)金額(百元)的頻率分布直方圖如圖1所示:(1)利用圖1,求網(wǎng)民消費(fèi)金額的平均值和中位數(shù);(2)把下表中空格里的數(shù)填上,能否有的把握認(rèn)為網(wǎng)購消費(fèi)與性別有關(guān).男女合計(jì)30合計(jì)45附表:P(χ2≥k0)0.100.050.012.7063.8416.635參考公式:χ2=.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)題中所給的條件,結(jié)合拋物線的對稱性,可知,從而可以確定出點(diǎn)的坐標(biāo),代入方程求得的值,進(jìn)而求得其焦點(diǎn)坐標(biāo),得到結(jié)果.【詳解】因?yàn)橹本€與拋物線交于兩點(diǎn),且,根據(jù)拋物線的對稱性可以確定,所以,代入拋物線方程,求得,所以其焦點(diǎn)坐標(biāo)為,故選:B.【點(diǎn)睛】該題考查的是有關(guān)圓錐曲線的問題,涉及到的知識(shí)點(diǎn)有直線與拋物線的交點(diǎn),拋物線的對稱性,點(diǎn)在拋物線上的條件,拋物線的焦點(diǎn)坐標(biāo),屬于簡單題目.2、D【解析】直接求導(dǎo),代入計(jì)算即可.【詳解】,故.故選:D.3、A【解析】根據(jù)導(dǎo)數(shù)的運(yùn)算法則和導(dǎo)數(shù)的基本公式計(jì)算后即可判斷【詳解】解:①,故錯(cuò)誤;②,故正確;③,故錯(cuò)誤;④,故錯(cuò)誤.所以求導(dǎo)運(yùn)算正確的個(gè)數(shù)為1.故選:A.4、C【解析】求出的值,結(jié)合大邊對大角定理可得出結(jié)論.【詳解】由正弦定理可得可得,因?yàn)椋瑒t,故為銳角,故滿足條件的只有一個(gè).故選:C.5、B【解析】細(xì)心觀察,尋求相鄰項(xiàng)及項(xiàng)與序號(hào)之間的關(guān)系,同時(shí)聯(lián)系相關(guān)知識(shí),如等差數(shù)列、等比數(shù)列等,結(jié)合圖形可知,,,,,,,據(jù)此即可求解.【詳解】由題意知,數(shù)列的各項(xiàng)為1,6,15,28,45,...所以,,,,,,所以.故選:B【點(diǎn)睛】本題考查合情推理中的歸納推理;考查邏輯推理能力;觀察分析、尋求規(guī)律是求解本題的關(guān)鍵;屬于中檔題、探索型試題.6、C【解析】先利用序列的所有項(xiàng)都是1,得到,整理后得到是等比數(shù)列,進(jìn)而求出公比和首項(xiàng),從而求出和,利用,列出不等式,求出,從而得到的最小值【詳解】因?yàn)?,,所以,又序列的所有?xiàng)都是1,所以它的第項(xiàng),所以,所以數(shù)列是等比數(shù)列,又,,所以公比,.所以,,,要,即,即,所以,所以,,所以最小值為4.故選:C.7、B【解析】根據(jù)已知條件求得的規(guī)律,從而確定正確選項(xiàng).【詳解】,,,,,……,以此類推,,所以.故選:B8、C【解析】化簡復(fù)數(shù)得,由其為純虛數(shù)求參數(shù)a,進(jìn)而求的模即可.【詳解】由為純虛數(shù),∴,解得:,則,故選:C9、A【解析】結(jié)合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【詳解】圓的圓心為,半徑為.設(shè)左焦點(diǎn)為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A10、B【解析】根據(jù)平面向量共線的性質(zhì),結(jié)合拋物線的定義進(jìn)行求解即可.【詳解】由已知得:,該拋物線的準(zhǔn)線方程為:,所以設(shè),因?yàn)?,所以,由拋物線的定義可知:,故選:B11、A【解析】先根據(jù)頻率分布直方圖確定成績在內(nèi)的頻率,進(jìn)而可求出結(jié)果.【詳解】由題意可得:成績在內(nèi)的頻率為,又本次賽車中,共名參賽選手,所以,這名選手中獲獎(jiǎng)的人數(shù)為.故選A【點(diǎn)睛】本題主要考查頻率分布直方圖,會(huì)根據(jù)頻率分布直方圖求頻率即可,屬于常考題型.12、B【解析】根據(jù)等差數(shù)列的前項(xiàng)和為具有的性質(zhì),即成等差數(shù)列,由此列出等式,求得答案.【詳解】因?yàn)闉榈炔顢?shù)列的前n項(xiàng)和,且,,所以成等差數(shù)列,所以,即,解得=18,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用待定系數(shù)法列出關(guān)于的方程解出即可得結(jié)果.【詳解】設(shè)的標(biāo)準(zhǔn)方程為,則解得所以的標(biāo)準(zhǔn)方程為故答案為:.14、①④【解析】畫出正方體,,,故,①正確,根據(jù)相交推出矛盾得到②錯(cuò)誤,根據(jù),與相交得到③錯(cuò)誤,排除共面的情況得到④正確,得到答案.【詳解】如圖所示的正方體中,,,故,①正確;若直線與直線相交,則四點(diǎn)共面,即在平面內(nèi),不成立,②錯(cuò)誤;,與相交,故直線與直線不平行,③錯(cuò)誤;,與不平行,故與不平行,若與相交,則四點(diǎn)共面,在平面內(nèi),不成立,故直線與直線異面,④正確;故答案為:①④.15、【解析】依題意,設(shè)所求的雙曲線的方程為.點(diǎn)為該雙曲線上的點(diǎn),.該雙曲線的方程為:,即.故本題正確答案是.16、【解析】設(shè),用參數(shù)表示目標(biāo)函數(shù),利用均值不等式求最值即可.【詳解】取線段AD中點(diǎn)為F,連接EF、D1F,過P點(diǎn)引于M,于N,則平面,平面,則,∴,設(shè),則,,即,,∴,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)15(百米)(2)點(diǎn)選在處不滿足規(guī)劃要求,理由見解析【解析】(1)建立適當(dāng)?shù)淖鴺?biāo)系,得圓及直線的方程,進(jìn)而得解.(2)不妨點(diǎn)選在處,求方程并求其與圓的交點(diǎn),在線段上取點(diǎn)不符合條件,得結(jié)論.【小問1詳解】如圖,過作,垂足為.以為坐標(biāo)原點(diǎn),直線為軸,建立平面直角坐標(biāo)系.因?yàn)闉閳A的直徑,,所以圓的方程為.因?yàn)?,,所以,故直線的方程為,則點(diǎn),的縱坐標(biāo)分別為3,從而,,直線的斜率為.因?yàn)椋灾本€的斜率為,直線的方程為.令,得,,所以.因此道路的長為15(百米).【小問2詳解】若點(diǎn)選在處,連結(jié),可求出點(diǎn),又,所以線段.由解得或,故不妨取,得到在線段上的點(diǎn),因?yàn)?,所以線段上存在點(diǎn)到點(diǎn)的距離小于圓的半徑5.因此點(diǎn)選在處不滿足規(guī)劃要求.18、(1)(2)【解析】(1)由等比數(shù)列的基本量,列式,即可求得首項(xiàng)和公比,再求通項(xiàng)公式;(2)由題意轉(zhuǎn)化為求數(shù)列的前項(xiàng)和的最大值,即可求參數(shù)的取值范圍.【小問1詳解】設(shè)等比數(shù)列的公比為,則,①,即,得,即,代入①得,解得:,所以;【小問2詳解】由(1)可知,數(shù)列是首項(xiàng)為2,公比為的等比數(shù)列,,若對任意恒成立,即,數(shù)列,,單調(diào)遞增,的最大值無限趨近于4,所以19、(1)(2)證明見解析.【解析】(1)利用導(dǎo)數(shù)判斷出在上單增,在上單減,在處取得唯一的極值,列不等式組,即可求出實(shí)數(shù)a的取值范圍;(2)記函數(shù),把證明,轉(zhuǎn)化為只需證明,用分析法證明即可.【小問1詳解】,定義域?yàn)椋?令,解得:;令,解得:所以在上單增,在上單減,在處取得唯一的極值.要使函數(shù)在上有極值,只需,解得:,即實(shí)數(shù)a的取值范圍為.【小問2詳解】記函數(shù).則函數(shù)有兩個(gè)不等實(shí)根.因?yàn)?,,兩式相減得,,兩式相加得,.因?yàn)椋砸C,只需證明,只需證明,只需證明,.證.設(shè),只需證明.記,則,所以在上2單增,所以,所以,即,所以.即證.【點(diǎn)睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識(shí)點(diǎn),對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系;(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù);(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題;(4)利用導(dǎo)數(shù)證明不等式20、(1)證明見解析;(2).【解析】(1)由正方體性質(zhì)易得,根據(jù)線面平行的判定可得面、面,再由面面平行的判定證明結(jié)論;(2)建立空間直角坐標(biāo)系,設(shè)正方體棱長為2,確定相關(guān)點(diǎn)的坐標(biāo),進(jìn)而求兩個(gè)半平面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求二面角的余弦值【小問1詳解】在正方體中,且,且,且,則四邊形為平行四邊形,即有,因?yàn)槊?,面,則平面,同理平面,又,面,則平面平面E.小問2詳解】以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為、、軸建立如圖所示的空間直角坐標(biāo)系,設(shè)正方體的棱長為,則,,所以,,設(shè)平面的法向量為,則,令,則由平面,則是平面的一個(gè)法向量設(shè)平面與平面夾角,,因此平面與平面所成銳二面角的余弦值為21、(1);(2)【解析】(1)由正弦定理,可得,進(jìn)而可求出和角;(2)利用余弦定理,可得,即可求出.【詳解】(1)由,得,因?yàn)椋裕忠驗(yàn)锽為銳角,所以(2)由余弦定理,可得,解得【點(diǎn)睛】本題考查正弦、余弦定理在解三角形中的運(yùn)用,考查學(xué)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 焊工證的模擬試題及答案
- (完整)醫(yī)師定期考核考試題庫及參考答案
- 齊齊哈爾市甘南縣招聘協(xié)管員考試真題及答案
- 江蘇航運(yùn)考試題型及答案
- 高頻管教能手面試試題大全及答案
- 元江哈尼族彝族傣族自治縣公開遴選公務(wù)員筆試題及答案解析(A類)
- 生保產(chǎn)品考試及答案
- 高頻六大部門面試試題及答案
- 體育教招筆試題目及答案
- 高級(jí)經(jīng)濟(jì)師《工商管理》試題庫及答案
- 五年級(jí)數(shù)學(xué)下冊寒假作業(yè)每日一練
- 傳染病院感防控課件
- 寒假生活有計(jì)劃主題班會(huì)
- 羅馬機(jī)場地圖
- 實(shí)習(xí)生醫(yī)德醫(yī)風(fēng)培訓(xùn)
- 橫穿公路管道施工方案
- 真空澆注工安全操作規(guī)程(3篇)
- 快樂讀書吧:非洲民間故事(專項(xiàng)訓(xùn)練)-2023-2024學(xué)年五年級(jí)語文上冊(統(tǒng)編版)
- GB/T 19609-2024卷煙用常規(guī)分析用吸煙機(jī)測定總粒相物和焦油
- 公路工程標(biāo)準(zhǔn)施工招標(biāo)文件(2018年版)
- 高處安全作業(yè)票(證)模板
評論
0/150
提交評論