2026屆陜西省合陽縣黑池中學高三數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第1頁
2026屆陜西省合陽縣黑池中學高三數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第2頁
2026屆陜西省合陽縣黑池中學高三數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第3頁
2026屆陜西省合陽縣黑池中學高三數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第4頁
2026屆陜西省合陽縣黑池中學高三數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆陜西省合陽縣黑池中學高三數(shù)學第一學期期末教學質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)(即質(zhì)數(shù))的和”,如,.在不超過20的素數(shù)中,隨機選取兩個不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對2.已知函數(shù)的圖象與直線的相鄰交點間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.3.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.4.如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是()A.2017年第一季度GDP增速由高到低排位第5的是浙江省.B.與去年同期相比,2017年第一季度的GDP總量實現(xiàn)了增長.C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個D.去年同期河南省的GDP總量不超過4000億元.5.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象.其中假命題的個數(shù)是()A.0 B.1 C.2 D.36.某人造地球衛(wèi)星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設地球半徑為,該衛(wèi)星近地點離地面的距離為,則該衛(wèi)星遠地點離地面的距離為()A. B.C. D.7.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.8.已知α,β表示兩個不同的平面,l為α內(nèi)的一條直線,則“α∥β是“l(fā)∥β”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件9.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.510.已知向量滿足,且與的夾角為,則()A. B. C. D.11.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.12.已知雙曲線的左、右焦點分別為、,拋物線與雙曲線有相同的焦點.設為拋物線與雙曲線的一個交點,且,則雙曲線的離心率為()A.或 B.或 C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知是等比數(shù)列,若,,且∥,則______.14.若向量與向量垂直,則______.15.函數(shù)的值域為_________.16.已知三棱錐的四個頂點在球的球面上,,是邊長為2的正三角形,,則球的體積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面直角坐標系中,橢圓的焦點為為橢圓上任意一點,且.(1)求橢圓的標準方程;(2)若直線交橢圓于兩點,且滿足(分別為直線的斜率),求的面積為時直線的方程.18.(12分)已知函數(shù).(1)當時,求不等式的解集;(2)若對任意成立,求實數(shù)的取值范圍.19.(12分)一張邊長為的正方形薄鋁板(圖甲),點,分別在,上,且(單位:).現(xiàn)將該薄鋁板沿裁開,再將沿折疊,沿折疊,使,重合,且重合于點,制作成一個無蓋的三棱錐形容器(圖乙),記該容器的容積為(單位:),(注:薄鋁板的厚度忽略不計)(1)若裁開的三角形薄鋁板恰好是該容器的蓋,求,的值;(2)試確定的值,使得無蓋三棱錐容器的容積最大.20.(12分)已知的三個內(nèi)角所對的邊分別為,向量,,且.(1)求角的大?。唬?)若,求的值21.(12分)已知數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)若,,且數(shù)列前項和為,求的取值范圍.22.(10分)已知關于的不等式解集為().(1)求正數(shù)的值;(2)設,且,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

首先確定不超過的素數(shù)的個數(shù),根據(jù)古典概型概率求解方法計算可得結(jié)果.【詳解】不超過的素數(shù)有,,,,,,,,共個,從這個素數(shù)中任選個,有種可能;其中選取的兩個數(shù),其和等于的有,,共種情況,故隨機選出兩個不同的數(shù),其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.2、A【解析】

由題知,利用求出,再根據(jù)題給定義,化簡求出的解析式,結(jié)合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【點睛】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關鍵是對新定義的理解.3、B【解析】

列出每一次循環(huán),直到計數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.4、C【解析】

利用圖表中的數(shù)據(jù)進行分析即可求解.【詳解】對于A選項:2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,故A正確;對于B選項:與去年同期相比,2017年第一季度5省的GDP均有不同的增長,所以其總量也實現(xiàn)了增長,故B正確;對于C選項:2017年第一季度GDP總量由高到低排位分別是:江蘇、山東、浙江、河南、遼寧,2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,均居同一位的省有2個,故C錯誤;對于D選項:去年同期河南省的GDP總量,故D正確.故選:C.【點睛】本題考查了圖表分析,學生的分析能力,推理能力,屬于基礎題.5、C【解析】

結(jié)合不等式、三角函數(shù)的性質(zhì),對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數(shù)的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應用,考查了三角函數(shù)圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.6、A【解析】

由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設衛(wèi)星近地點,遠地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關鍵,屬于中檔題.7、A【解析】

畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關鍵點是通過幾何關系求得球心位置和球半徑,方法較多,屬于較易題目.8、A【解析】試題分析:利用面面平行和線面平行的定義和性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷.解:根據(jù)題意,由于α,β表示兩個不同的平面,l為α內(nèi)的一條直線,由于“α∥β,則根據(jù)面面平行的性質(zhì)定理可知,則必然α中任何一條直線平行于另一個平面,條件可以推出結(jié)論,反之不成立,∴“α∥β是“l(fā)∥β”的充分不必要條件.故選A.考點:必要條件、充分條件與充要條件的判斷;平面與平面平行的判定.9、D【解析】

根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.10、A【解析】

根據(jù)向量的運算法則展開后利用數(shù)量積的性質(zhì)即可.【詳解】.故選:A.【點睛】本題主要考查數(shù)量積的運算,屬于基礎題.11、D【解析】

根據(jù)點差法得,再根據(jù)焦點坐標得,解方程組得,,即得結(jié)果.【詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.12、D【解析】

設,,根據(jù)和拋物線性質(zhì)得出,再根據(jù)雙曲線性質(zhì)得出,,最后根據(jù)余弦定理列方程得出、間的關系,從而可得出離心率.【詳解】過分別向軸和拋物線的準線作垂線,垂足分別為、,不妨設,,則,為雙曲線上的點,則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【點睛】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡單性質(zhì),考查運算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】若,,且∥,則,由是等比數(shù)列,可知公比為..故答案為.14、0【解析】

直接根據(jù)向量垂直計算得到答案.【詳解】向量與向量垂直,則,故.故答案為:.【點睛】本題考查了根據(jù)向量垂直求參數(shù),意在考查學生的計算能力.15、【解析】

利用換元法,得到,利用導數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【詳解】由題意,可得,令,,即,則,當時,,當時,,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域為:.【點睛】本題主要考查了三角函數(shù)的最值,以及利用導數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導數(shù)求解函數(shù)的單調(diào)性與最值是解答的關鍵,著重考查了推理與預算能力,屬于基礎題.16、【解析】

由題意可得三棱錐的三條側(cè)棱兩兩垂直,則它的外接球就是棱長為的正方體的外接球,求出正方體的對角線的長,就是球的直徑,然后求出球的體積.【詳解】解:因為,為正三角形,所以,因為,所以三棱錐的三條側(cè)棱兩兩垂直,所以它的外接球就是棱長為的正方體的外接球,因為正方體的對角線長為,所以其外接球的半徑為,所以球的體積為故答案為:【點睛】此題考查球的體積,幾何體的外接球,考查空間想象能力,計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】

(1)根據(jù)橢圓定義求得,得橢圓方程;(2)設,由得,應用韋達定理得,代入已知條件可得,再由橢圓中弦長公式求得弦長,原點到直線的距離,得三角形面積,從而可求得,得直線方程.【詳解】解:(1)據(jù)題意設橢圓的方程為則橢圓的標準方程為.(2)據(jù)得設,則又原點到直線的距離解得或所求直線的方程為或【點睛】本題考查求橢圓標準方程,考查直線與橢圓相交問題.解題時采取設而不求思想,即設交點坐標為,直線方程與橢圓方程聯(lián)立消元后應用韋達定理得,把這個結(jié)論代入題中條件求得參數(shù),用它求弦長等等,從而解決問題.18、(1)(2)【解析】

(1)把代入,利用零點分段討論法求解;(2)對任意成立轉(zhuǎn)化為求的最小值可得.【詳解】解:(1)當時,不等式可化為.討論:①當時,,所以,所以;②當時,,所以,所以;③當時,,所以,所以.綜上,當時,不等式的解集為.(2)因為,所以.又因為,對任意成立,所以,所以或.故實數(shù)的取值范圍為.【點睛】本題主要考查含有絕對值不等式的解法及恒成立問題,恒成立問題一般是轉(zhuǎn)化為最值問題求解,側(cè)重考查數(shù)學建模和數(shù)學運算的核心素養(yǎng).19、(1),;(2)當值為時,無蓋三棱錐容器的容積最大.【解析】

(1)由已知求得,求得三角形的面積,再由已知得到平面,代入三棱錐體積公式求的值;(2)由題意知,在等腰三角形中,,則,,寫出三角形面積,求其平方導數(shù)的最值,則答案可求.【詳解】解:(1)由題意,為等腰直角三角形,又,,恰好是該零件的蓋,,則,由圖甲知,,,則在圖乙中,,,,又,平面,平面,;(2)由題意知,在等腰三角形中,,則,,.令,,,.可得:當時,,當,時,,當時,有最大值.由(1)知,平面,該三棱錐容積的最大值為,且.當時,取得最大值,無蓋三棱錐容器的容積最大.答:當值為時,無蓋三棱錐容器的容積最大.【點睛】本題考查棱錐體積的求法,考查空間想象能力與思維能力,訓練了利用導數(shù)求最值,屬于中檔題.20、(1)(2)【解析】

利用平面向量數(shù)量積的坐標表示和二倍角的余弦公式得到關于的方程,解方程即可求解;由知,在中利用余弦定理得到關于的方程,與方程聯(lián)立求出,進而求出,利用兩角差的正弦公式求解即可.【詳解】由題意得,,由二倍

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論