版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆河北省阜平一中高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過原點(diǎn)O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A. B.C. D.2.已知圓:,是直線的一點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為,,則的最小值為()A. B.C. D.3.一動(dòng)圓與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,則動(dòng)圓圓心軌跡為()A.圓 B.橢圓C.雙曲線的一支 D.拋物線4.點(diǎn)到直線的距離為2,則的值為()A.0 B.C.0或 D.0或5.已知點(diǎn)在拋物線:上,則的焦點(diǎn)到其準(zhǔn)線的距離為()A. B.C.1 D.26.直線的斜率是()A. B.C. D.7.圓關(guān)于直線對(duì)稱,則的最小值是()A. B.C. D.8.在四棱錐中,底面是正方形,為的中點(diǎn),若,則()A B.C. D.9.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個(gè)高階等差數(shù)列,其前7項(xiàng)分別為1,5,11,21,37,61,95,則該數(shù)列的第8項(xiàng)為()A.99 B.131C.139 D.14110.若拋物線與直線:相交于兩點(diǎn),則弦的長(zhǎng)為()A.6 B.8C. D.11.正三棱錐的側(cè)面都是直角三角形,,分別是,的中點(diǎn),則與平面所成角的余弦值為()A. B.C. D.12.已知橢圓的上下頂點(diǎn)分別為,一束光線從橢圓左焦點(diǎn)射出,經(jīng)過反射后與橢圓交于點(diǎn),則直線的斜率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機(jī)變量,且,則______.14.已知,分別是橢圓和雙曲線的離心率,,是它們的公共焦點(diǎn),M是它們的一個(gè)公共點(diǎn),且,則的最大值為______15.過點(diǎn)的直線與雙曲線交于兩點(diǎn),且點(diǎn)恰好是線段的中點(diǎn),則直線的方程為___________.16.如圖,把橢圓的長(zhǎng)軸八等分,過每個(gè)分點(diǎn)作軸的垂線交橢圓的上半部分于,,,七個(gè)點(diǎn),是橢圓的一個(gè)焦點(diǎn),則的值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足:,,數(shù)列的前n項(xiàng)和為(1)求及;(2)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的前項(xiàng)和18.(12分)要設(shè)計(jì)一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計(jì)才能使得總成本最低?19.(12分)已知過拋物線的焦點(diǎn)F且斜率為1的直線l交C于A,B兩點(diǎn),且(1)求拋物線C的方程;(2)求以C的準(zhǔn)線與x軸的交點(diǎn)D為圓心且與直線l相切的圓的方程20.(12分)已知橢圓的焦距為4,點(diǎn)在G上.(1)求橢圓G方程;(2)過橢圓G右焦點(diǎn)的直線l與橢圓G交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求直線l的方程.21.(12分)在等差數(shù)列中,已知且(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列前項(xiàng)和22.(10分)等差數(shù)列的前項(xiàng)和為,數(shù)列是等比數(shù)列,滿足,,,.(1)求數(shù)列和的通項(xiàng)公式;(2)令,設(shè)數(shù)列的前項(xiàng)和為,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】直線AC、BD與坐標(biāo)軸重合時(shí)求出四邊形面積,與坐標(biāo)軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對(duì)角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個(gè)頂點(diǎn)為橢圓頂點(diǎn)時(shí),而,四邊形ABCD的面積,當(dāng)直線AC斜率存在且不0時(shí),設(shè)其方程為,由消去y得:,設(shè),則,,直線BD方程為,同理得:,則有,當(dāng)且僅當(dāng),即或時(shí)取“=”,而,所以四邊形ABCD面積最小值為.故選:A2、A【解析】根據(jù)題意,為四邊形的面積的2倍,即,然后利用切線長(zhǎng)定理,將問題轉(zhuǎn)化為圓心到直線的距離求解.【詳解】圓:的圓心為,半徑,設(shè)四邊形的面積為,由題設(shè)及圓的切線性質(zhì)得,,∵,∴,圓心到直線的距離為,∴的最小值為,則的最小值為,故選:A3、C【解析】設(shè)動(dòng)圓圓心,與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,列出幾何關(guān)系式,化簡(jiǎn),再根據(jù)圓錐曲線的定義,可得到動(dòng)圓圓心軌跡.【詳解】設(shè)動(dòng)圓圓心,半徑為,圓x2+y2=1的圓心為,半徑為,圓x2+y2﹣8x+12=0,得,則圓心,半徑為,根據(jù)圓與圓相切,則,,兩式相減得,根據(jù)定義可得動(dòng)圓圓心軌跡為雙曲線的一支.故選:C【點(diǎn)睛】本題考查了兩圓的位置關(guān)系,圓錐曲線的定義,屬于基礎(chǔ)題.4、C【解析】根據(jù)點(diǎn)到直線的距離公式即可得出答案.【詳解】解:點(diǎn)到直線的距離為,解得或.故選:C.5、B【解析】由點(diǎn)在拋物線上,求得參數(shù),焦點(diǎn)到其準(zhǔn)線的距離即為.【詳解】由點(diǎn)在拋物線上,易知,,故焦點(diǎn)到其準(zhǔn)線的距離為.故選:B.6、D【解析】把直線方程化為斜截式即得【詳解】直線方程的斜截式為,斜率為故選:D7、C【解析】先求出圓的圓心坐標(biāo),根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標(biāo)準(zhǔn)方程為,因?yàn)閳A關(guān)于直線對(duì)稱,該直線經(jīng)過圓心,即,,,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故選:C.8、C【解析】由為的中點(diǎn),根據(jù)向量的運(yùn)算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點(diǎn),且,根據(jù)向量的運(yùn)算法則,可得.故選:C.9、D【解析】根據(jù)題中所給高階等差數(shù)列定義,找出其一般規(guī)律即可求解.【詳解】設(shè)該高階等差數(shù)列的第8項(xiàng)為,根據(jù)所給定義,用數(shù)列的后一項(xiàng)減去前一項(xiàng)得到一個(gè)數(shù)列,得到的數(shù)列也用后一項(xiàng)減去前一項(xiàng)得到一個(gè)數(shù)列,即得到了一個(gè)等差數(shù)列,如圖:由圖可得,則.故選:D10、B【解析】由題得拋物線的焦點(diǎn)坐標(biāo)為剛好在直線上,再聯(lián)立直線和拋物線的方程,利用韋達(dá)定理和拋物線的定義求解.【詳解】解:由題得.由題得拋物線的焦點(diǎn)坐標(biāo)為剛好在直線上,設(shè),聯(lián)立直線和拋物線方程得,所以.所以.故選:B11、C【解析】以P為原點(diǎn),PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,利用向量法能求出PB與平面PEF所成角的正弦值.【詳解】∵正三棱錐的側(cè)面都是直角三角形,E,F(xiàn)分別是AB,BC的中點(diǎn),∴以P為原點(diǎn),PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面PEF的法向量,則,取,得,設(shè)PB與平面PEF所成角為,則,∴PB與平面PEF所成角的正弦值為.故選:C.12、B【解析】根據(jù)給定條件借助橢圓的光學(xué)性質(zhì)求出直線AD的方程,進(jìn)而求出點(diǎn)D的坐標(biāo)計(jì)算作答.【詳解】依題意,橢圓的上頂點(diǎn),下頂點(diǎn),左焦點(diǎn),右焦點(diǎn),由橢圓的光學(xué)性質(zhì)知,反射光線AD必過右焦點(diǎn),于是得直線AD的方程為:,由得點(diǎn),則有,所以直線的斜率為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)二項(xiàng)分布的均值與方差的關(guān)系求得,再根據(jù)方差的性質(zhì)求解即可.【詳解】,所以,又因?yàn)?所以故答案為:12【點(diǎn)睛】本題主要考查了二項(xiàng)分布的均值與方差的計(jì)算,同時(shí)也考查了方差的性質(zhì),屬于基礎(chǔ)題.14、【解析】利用橢圓、雙曲線的定義以及余弦定理找到的關(guān)系,然后利用三角換元求最值即可.【詳解】解析:設(shè)橢圓的長(zhǎng)半軸為a,雙曲線的實(shí)半軸為,半焦距為c,設(shè),,,因?yàn)?,所以由余弦定理可得,①在橢圓中,,①化簡(jiǎn)為,即,②在雙曲線中,,①化簡(jiǎn)為,即,③聯(lián)立②③得,,即,記,,,則,當(dāng)且僅當(dāng),即,時(shí)取等號(hào)故答案為:.15、【解析】設(shè),,,,分別代入雙曲線方程,兩式相減,化簡(jiǎn)可得:,結(jié)合中點(diǎn)坐標(biāo)公式求得直線的斜率,再利用點(diǎn)斜式即可求直線方程【詳解】過點(diǎn)的直線與該雙曲線交于,兩點(diǎn),設(shè),,,,,兩式相減可得:,因?yàn)闉榈闹悬c(diǎn),,,,則,所以直線的方程為,即為故答案為:【點(diǎn)睛】方法點(diǎn)睛:對(duì)于有關(guān)弦中點(diǎn)問題常用“點(diǎn)差法”,其解題步驟為:①設(shè)點(diǎn)(即設(shè)出弦的兩端點(diǎn)坐標(biāo));②代入(即代入圓錐曲線方程);③作差(即兩式相減,再用平方差公式分解因式);④整理(即轉(zhuǎn)化為斜率與中點(diǎn)坐標(biāo)的關(guān)系式),然后求解.16、28【解析】設(shè)橢圓的另一個(gè)焦點(diǎn)為由橢圓的幾何性質(zhì)可知:,同理可得,且,故,故答案為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)先根據(jù)已知求出,再求及.(2)先根據(jù)已知得到,再利用分組求和求數(shù)列的前項(xiàng)和.【詳解】(1)設(shè)等差數(shù)列的公差為d,因?yàn)椋?,解得,所以?=.(2)由已知得,由(1)知,所以,=.【點(diǎn)睛】(1)本題主要考查等差數(shù)列的通項(xiàng)和前n項(xiàng)和求法,考查分組求和和等比數(shù)列的求和公式,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和計(jì)算推理能力.(2)有一類數(shù)列,它既不是等差數(shù)列,也不是等比數(shù)列,但是數(shù)列是等差數(shù)列或等比數(shù)列或常見特殊數(shù)列,則可以將這類數(shù)列適當(dāng)拆開,可分為幾個(gè)等差、等比數(shù)列或常見的特殊數(shù)列,然后分別求和,再將其合并即可.這叫分組求和法.18、當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進(jìn)而根據(jù)體積得到,然后求出表面積,進(jìn)而運(yùn)用導(dǎo)數(shù)的方法求得表面積的最小值,此時(shí)成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價(jià)為元,由題意得:,則,表面積造價(jià),,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.19、(1);(2)【解析】(1)首先表示出直線l的方程,再聯(lián)立直線與拋物線方程,消去,列出韋達(dá)定理,再根據(jù)焦點(diǎn)弦公式計(jì)算可得;(2)由(1)可得,再利用點(diǎn)到直線的距離求出半徑,即可求出圓的方程;【詳解】解析:(1)由已知得點(diǎn),∴直線l的方程為,聯(lián)立去,消去整理得設(shè),,則,,∴拋物線C的方程為(2)由(1)可得,直線l的方程為,∴圓D的半徑,∴圓D的方程為【點(diǎn)睛】本題考查拋物線的簡(jiǎn)單幾何性質(zhì),屬于中檔題.20、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設(shè)l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達(dá)定理,根據(jù)得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點(diǎn)坐標(biāo)是,.因?yàn)辄c(diǎn)在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設(shè)l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因?yàn)椋?,則,即,由,得,.所以,解得,即,所以直線l的方程為.21、(1)(2)【解析】(1)由等差數(shù)列基本量的計(jì)算即可求解;(2)由裂項(xiàng)相消求和法即可求解.【小問1詳解】解:由題意,設(shè)等差數(shù)列的公差為,則,,解得,;【小問2詳解】解:,.22、(1),(2)【解析】(1)根據(jù)條件列關(guān)于公差與公比的方程組,解方程組可得再根據(jù)等差數(shù)列與等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工方案注意問題(3篇)
- 罕見腫瘤的代謝重編程與靶向干預(yù)
- 2026年濟(jì)寧市屬事業(yè)單位公開招聘初級(jí)綜合類崗位人員備考題庫(kù)(33人)及一套完整答案詳解
- 2026四川成都市雙流區(qū)實(shí)驗(yàn)第四幼兒園招聘3人備考題庫(kù)含答案詳解
- 2026對(duì)外經(jīng)濟(jì)貿(mào)易大學(xué)事業(yè)編專職輔導(dǎo)員、其他專技人員招聘?jìng)淇碱}庫(kù)完整答案詳解
- 2026江西職業(yè)技術(shù)大學(xué)高層次人才招聘?jìng)淇碱}庫(kù)及完整答案詳解
- 陜西高考預(yù)考制度
- 罕見腫瘤的個(gè)體化治療治療策略優(yōu)化經(jīng)驗(yàn)與個(gè)體化醫(yī)療-1
- 2025年建筑施工企業(yè)施工日志管理制度
- 山東省公路系統(tǒng)財(cái)務(wù)制度
- 2025年中考?xì)v史開卷考查范圍重大考點(diǎn)全突破(完整版)
- 學(xué)術(shù)誠(chéng)信與學(xué)術(shù)規(guī)范研究-深度研究
- 《ETF相關(guān)知識(shí)培訓(xùn)》課件
- (一模)烏魯木齊地區(qū)2025年高三年級(jí)第一次質(zhì)量英語(yǔ)試卷(含答案)
- 2025年云南省普洱市事業(yè)單位招聘考試(833人)高頻重點(diǎn)提升(共500題)附帶答案詳解
- DB15-T 3677-2024 大興安嶺林區(qū)白樺樹汁采集技術(shù)規(guī)程
- 2024年《13464電腦動(dòng)畫》自考復(fù)習(xí)題庫(kù)(含答案)
- 義務(wù)教育階段學(xué)生語(yǔ)文核心素養(yǎng)培養(yǎng)的思考與實(shí)踐
- 綜合利用1噸APT渣項(xiàng)目研究報(bào)告樣本
- JT-T 1495-2024 公路水運(yùn)危險(xiǎn)性較大工程專項(xiàng)施工方案編制審查規(guī)程
- 圓錐曲線壓軸題30題2023
評(píng)論
0/150
提交評(píng)論