版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆江蘇省蘇州新區(qū)實(shí)驗(yàn)中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列共有項(xiàng),其中奇數(shù)項(xiàng)之和為290,偶數(shù)項(xiàng)之和為261,則的值為()A.30 B.29C.28 D.272.直線與直線交于點(diǎn)Q,m是實(shí)數(shù),O為坐標(biāo)原點(diǎn),則的最大值是()A.2 B.C. D.43.設(shè),向量,,,且,,則()A. B.C.3 D.44.已知在四棱錐中,平面,底面是邊長(zhǎng)為4的正方形,,E為棱的中點(diǎn),則直線與平面所成角的正弦值為()A. B.C. D.5.已知數(shù)列{}滿足,且,若,則=()A.-8 B.-11C.8 D.116.已知四面體,所有棱長(zhǎng)均為2,點(diǎn)E,F(xiàn)分別為棱AB,CD的中點(diǎn),則()A.1 B.2C.-1 D.-27.饕餮(tāotiè)紋,青銅器上常見的花紋之一,盛行于商代至西周早期,最早出現(xiàn)在距今五千年前長(zhǎng)江下游地區(qū)的良渚文化玉器上.有人將饕餮紋的一部分畫到了方格紙上,如圖所示,每個(gè)小方格的邊長(zhǎng)為,有一點(diǎn)從點(diǎn)出發(fā)每次向右或向下跳一個(gè)單位長(zhǎng)度,且向右或向下跳是等可能性的,那么它經(jīng)過(guò)次跳動(dòng)后恰好是沿著饕餮紋的路線到達(dá)點(diǎn)的概率為()A. B.C. D.8.兩個(gè)圓和的位置是關(guān)系是()A.相離 B.外切C.相交 D.內(nèi)含9.用數(shù)學(xué)歸納法證明“”時(shí),由假設(shè)證明時(shí),不等式左邊需增加的項(xiàng)數(shù)為()A. B.C. D.10.雙曲線的離心率為,則其漸近線方程為A. B.C. D.11.已知點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,則()A. B.C. D.12.在四面體OABC中,,,,則與AC所成角的大小為()A.30° B.60°C.120° D.150°二、填空題:本題共4小題,每小題5分,共20分。13.參加數(shù)學(xué)興趣小組的小何同學(xué)在打籃球時(shí),發(fā)現(xiàn)當(dāng)籃球放在地面上時(shí),籃球的斜上方燈泡照過(guò)來(lái)的光線使得籃球在地面上留下的影子有點(diǎn)像數(shù)學(xué)課堂上學(xué)過(guò)的橢圓,但他自己還是不太確定這個(gè)想法,于是回到家里翻閱了很多參考資料,終于明白自己的猜想是沒有問(wèn)題的,而且通過(guò)學(xué)習(xí),他還確定地面和籃球的接觸點(diǎn)(切點(diǎn))就是影子橢圓的焦點(diǎn).他在家里做了個(gè)探究實(shí)驗(yàn):如圖所示,桌面上有一個(gè)籃球,若籃球的半徑為個(gè)單位長(zhǎng)度,在球的右上方有一個(gè)燈泡(當(dāng)成質(zhì)點(diǎn)),燈泡與桌面的距離為個(gè)單位長(zhǎng)度,燈泡垂直照射在平面的點(diǎn)為,影子橢圓的右頂點(diǎn)到點(diǎn)的距離為個(gè)單位長(zhǎng)度,則這個(gè)影子橢圓的離心率______.14.若雙曲線的漸近線與圓相切,則該雙曲線的實(shí)軸長(zhǎng)為______15.已知等比數(shù)列的前項(xiàng)和為,若,,則______.16.拋物線的準(zhǔn)線方程是________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知如圖①,在菱形ABCD中,且,為AD的中點(diǎn),將沿BE折起使,得到如圖②所示的四棱錐,在四棱錐中,求解下列問(wèn)題:(1)求證:BC平面ABE;(2)若P為AC中點(diǎn),求二面角的余弦值.18.(12分)已知三點(diǎn)共線,其中是數(shù)列中的第n項(xiàng).(1)求數(shù)列的通項(xiàng);(2)設(shè),求數(shù)列的前n項(xiàng)和.19.(12分)已知命題實(shí)數(shù)滿足不等式,命題實(shí)數(shù)滿足不等式.(1)當(dāng)時(shí),命題,均為真命題,求實(shí)數(shù)的取值范圍;(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.20.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)證明:對(duì)任意正整數(shù)n,21.(12分)已知函數(shù)(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若不等式在區(qū)間上恒成立,求k的取值范圍22.(10分)已知函數(shù).(1)若,求的極值;(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)a取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由等差數(shù)列的求和公式與等差數(shù)列的性質(zhì)求解即可【詳解】奇數(shù)項(xiàng)共有項(xiàng),其和為,∴偶數(shù)項(xiàng)共有n項(xiàng),其和為,∴故選:B2、B【解析】求出兩直線的交點(diǎn)坐標(biāo),結(jié)合兩點(diǎn)間的距離公式得到,進(jìn)而可以求出結(jié)果.【詳解】因?yàn)榕c的交點(diǎn)坐標(biāo)為所以,當(dāng)時(shí),,所以的最大值是,故選:B.3、C【解析】根據(jù)空間向量垂直與平行的坐標(biāo)表示,求得的值,得到向量,進(jìn)而求得,得到答案.【詳解】由題意,向量,,,因?yàn)椋傻?,解得,即,又因?yàn)椋傻?,解得,即,可得,所?故選:C.4、B【解析】建立空間直角坐標(biāo)系,以向量法去求直線與平面所成角的正弦值即可.【詳解】平面,底面是邊長(zhǎng)為4的正方形,則有,而,故平面,以A為原點(diǎn),分別以AB、AD、AP所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系如圖:則,,,設(shè)直線與平面所成角為,又由題可知為平面的一個(gè)法向量,則故選:B5、C【解析】利用遞推關(guān)系,結(jié)合取值,求得即可.【詳解】因?yàn)?,且,,故可得,解得(舍?;同理求得,,.故選:C.6、D【解析】在四面體中,取定一組基底向量,表示出,,再借助空間向量數(shù)量積計(jì)算作答.【詳解】四面體所有棱長(zhǎng)均為2,則向量不共面,兩兩夾角都為,則,因點(diǎn)E,F(xiàn)分別為棱AB,CD的中點(diǎn),則,,,所以.故選:D7、B【解析】本題首先可根據(jù)題意列出次跳動(dòng)的所有基本事件,然后找出沿著饕餮紋的路線到達(dá)點(diǎn)的事件,最后根據(jù)古典概型的概率計(jì)算公式即可得出結(jié)果.【詳解】點(diǎn)從點(diǎn)出發(fā),每次向右或向下跳一個(gè)單位長(zhǎng)度,次跳動(dòng)的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿著饕餮紋的路線到達(dá)點(diǎn)的事件有:(下,下,右),故到達(dá)點(diǎn)的概率,故選:B.8、C【解析】根據(jù)圓的方程得出兩圓的圓心和半徑,再得出圓心距離與兩圓的半徑的關(guān)系,可得選項(xiàng).【詳解】圓的圓心為,半徑,的圓心為,半徑,則,所以兩圓的位置是關(guān)系是相交,故選:C.【點(diǎn)睛】本題考查兩圓的位置關(guān)系,關(guān)鍵在于運(yùn)用判定兩圓的位置關(guān)系一般利用幾何法.即比較圓心之間的距離與半徑之和、之差的大小關(guān)系,屬于基礎(chǔ)題.9、C【解析】當(dāng)成立,寫出左側(cè)的表達(dá)式,當(dāng)時(shí),寫出對(duì)應(yīng)的關(guān)系式,觀察計(jì)算即可【詳解】從到成立時(shí),左邊增加的項(xiàng)為,因此增加的項(xiàng)數(shù)是,故選:C10、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:因?yàn)闈u近線方程為,所以漸近線方程為,選A.點(diǎn)睛:已知雙曲線方程求漸近線方程:.11、C【解析】根據(jù)空間兩點(diǎn)間距離公式,結(jié)合對(duì)稱性進(jìn)行求解即可.【詳解】因?yàn)辄c(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,所以,因此,故選:C12、B【解析】以為空間的一個(gè)基底,求出空間向量求的夾角即可判斷作答.【詳解】在四面體OABC中,不共面,則,令,依題意,,設(shè)與AC所成角的大小為,則,而,解得,所以與AC所成角的大小為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立平面直角坐標(biāo)系,解得圖中N、Q的橫坐標(biāo),列方程組即可求得橢圓的a、c,進(jìn)而求得橢圓的離心率.【詳解】以A為原點(diǎn)建立平面直角坐標(biāo)系,則,,直線PR的方程為設(shè),由到直線PR的距離為1,得,解之得或(舍)則,又設(shè)直線PN方程為由到直線PN的距離為1,得,整理得則,又,故則直線PN的方程為,故,由,解得,故橢圓的離心率故答案為:【點(diǎn)睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問(wèn)題直觀化、生動(dòng)化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問(wèn)題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問(wèn)題便迎刃而解,且解法簡(jiǎn)捷。14、【解析】由雙曲線方程寫出漸近線,根據(jù)相切關(guān)系,結(jié)合點(diǎn)線距離公式求參數(shù)a,即可確定實(shí)軸長(zhǎng).【詳解】由題設(shè),漸近線方程為,且圓心為,半徑為1,所以,由相切關(guān)系知:,可得,又,即,所以雙曲線的實(shí)軸長(zhǎng)為.故答案為:15、【解析】設(shè)等比數(shù)列的公比為,根據(jù)已知條件求出的值,由此可得出的值.【詳解】設(shè)等比數(shù)列的公比為,則,整理可得,,解得,因此,.故答案為:.16、【解析】將拋物線方程化為標(biāo)準(zhǔn)形式,從而得到準(zhǔn)線方程.【詳解】拋物線方程可化為:拋物線準(zhǔn)線方程為:故答案為【點(diǎn)睛】本題考查拋物線準(zhǔn)線的求解,易錯(cuò)點(diǎn)是未將拋物線方程化為標(biāo)準(zhǔn)方程.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析;(2)【解析】(1)利用題中所給的條件證明,,因?yàn)椋?,,即可證明平面;(2)先證明平面,以為坐標(biāo)原點(diǎn),,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的一個(gè)法向量,平面的一個(gè)法向量,利用向量的夾角公式即可求解【詳解】(1)在圖①中,連接,如圖所示:因?yàn)樗倪呅螢榱庑?,,所以是等邊三角?因?yàn)闉榈闹悬c(diǎn),所以,.又,所以.在圖②中,,所以,即.因?yàn)椋裕?又,,平面.所以平面.(2)由(1)知,,因?yàn)?,,平?所以平面.以為坐標(biāo)原點(diǎn),,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系:則,,,,.因?yàn)闉榈闹悬c(diǎn),所以.所以,.設(shè)平面的一個(gè)法向量為,由得.令,得,,所以.設(shè)平面的一個(gè)法向量為.因?yàn)椋傻昧?,,,得則,由圖象可知二面角為銳角,所以二面角的余弦值為.18、(1)(2)【解析】(1)由三點(diǎn)共線可知斜率相等,即可得出答案;(2)由題可得,利用錯(cuò)位相減法即可求出答案.【小問(wèn)1詳解】三點(diǎn)共線,【小問(wèn)2詳解】①②①—②得19、(1);(2).【解析】(1)分別求出命題,均為真命題時(shí)的取值范圍,再求交集即可.(2)利用集合間的關(guān)系求解即可.【詳解】實(shí)數(shù)滿足不等式,即命題實(shí)數(shù)滿足不等式,即(1)當(dāng)時(shí),命題,均為真命題,則且則實(shí)數(shù)的取值范圍為;(2)若是的充分不必要條件,則是的真子集則且解得故的取值范圍為.【點(diǎn)睛】判斷充分條件與必要條件應(yīng)注意:首先弄清條件和結(jié)論分別是什么,然后直接依據(jù)定義、定理、性質(zhì)嘗試.對(duì)于帶有否定性的命題或比較難判斷的命題,除借助集合思想化抽象為直觀外,還可利用原命題和逆否命題、逆命題和否命題的等價(jià)性,轉(zhuǎn)化為判斷它的等價(jià)命題;對(duì)于范圍問(wèn)題也可以轉(zhuǎn)化為包含關(guān)系來(lái)處理.20、(1)見解析(2)見解析【解析】(1)由,令,得,或,又的定義域?yàn)椋懻搩蓚€(gè)根及的大小關(guān)系,即可判定函數(shù)的單調(diào)性;(2)當(dāng)時(shí),在,上遞減,則,即,由此能夠證明【小問(wèn)1詳解】的定義域?yàn)椋?,令,得,或,①?dāng),即時(shí),若,則,遞增;若,則,遞減;②當(dāng),即時(shí),若,則,遞減;若,則,遞增;若,則,遞減;綜上所述,當(dāng)-2<a<0時(shí),f(x)在,單調(diào)遞減,在單調(diào)遞增;當(dāng)a≥0時(shí),f(x)在單調(diào)遞增,在單調(diào)遞減.【小問(wèn)2詳解】由(2)知當(dāng)時(shí),在,上遞減,,即,,,,2,3,,,,【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,本題的關(guān)鍵是令a=1,用已知函數(shù)的單調(diào)性構(gòu)造,再令x=恰當(dāng)?shù)乩脤?duì)數(shù)求和進(jìn)行解題21、(1)在上單調(diào)遞增,在上單調(diào)遞減,極大值為﹣1,無(wú)極小值(2)【解析】(1)利用導(dǎo)數(shù)求出單調(diào)區(qū)間,即可求出極值;(2)令,利用分離參數(shù)法得到,利用導(dǎo)數(shù)求出的最大值即可求解.【小問(wèn)1詳解】當(dāng)時(shí),,定義域?yàn)?,?dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減∴當(dāng)時(shí),取得極大值﹣1所以在上單調(diào)遞增,在上單調(diào)遞減極大值為﹣1,無(wú)極小值【小問(wèn)2詳解】由,得,令,只需.求導(dǎo)得,所以當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,∴當(dāng)時(shí),取得最大值,∴k的取值范圍為22、(1)極小值為,無(wú)極大值(2)【
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 錢賬分離財(cái)務(wù)制度
- 工業(yè)強(qiáng)基項(xiàng)目財(cái)務(wù)制度
- 網(wǎng)貸平臺(tái)財(cái)務(wù)制度
- 創(chuàng)建輔導(dǎo)員培養(yǎng)培訓(xùn)制度
- 掌握分級(jí)管理制度的好處(3篇)
- 婚紗開業(yè)活動(dòng)策劃方案(3篇)
- 中秋小班活動(dòng)方案策劃(3篇)
- 免疫日活動(dòng)策劃方案(3篇)
- 中餐酒店前臺(tái)衛(wèi)生管理制度(3篇)
- 罕見血液病治療中的聯(lián)合用藥方案
- 檢驗(yàn)項(xiàng)目管理培訓(xùn)
- 《醫(yī)學(xué)影像檢查技術(shù)學(xué)》課件-膝關(guān)節(jié)、髖關(guān)節(jié)X線攝影
- 我的阿勒泰我的阿勒泰
- 廣東省佛山市南海區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試卷(含答案)
- 全套教學(xué)課件《工程倫理學(xué)》
- 固定式壓力容器年度檢查表
- 裝配式建筑可行性研究報(bào)告
- 新人教部編版一年級(jí)下冊(cè)生字表全冊(cè)描紅字帖可打印
- 脫碳塔CO2脫氣塔設(shè)計(jì)計(jì)算
- 產(chǎn)品報(bào)價(jià)單貨物報(bào)價(jià)表(通用版)
- 中學(xué)保安工作管理制度
評(píng)論
0/150
提交評(píng)論