版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆江西省臨川區(qū)第一中學高一數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),若則a的值為(
)A. B.C.或 D.或2.下列函數(shù)中,在區(qū)間上是增函數(shù)是A. B.C. D.3.已知是定義在上的奇函數(shù),當時,,則當時,的表達式為()A. B.C. D.4.直線xa2-A.|b| B.-C.b2 D.5.零點所在的區(qū)間是()A. B.C. D.6.已知角x的終邊上一點的坐標為(sin,cos),則角x的最小正值為()A. B.C. D.7.若是定義在(-∞,+∞)上的偶函數(shù),∈[0,+∞)且(),則()A. B.C. D.8.已知冪函數(shù)過點,則在其定義域內(nèi)()A.為偶函數(shù) B.為奇函數(shù)C.有最大值 D.有最小值9.若函數(shù)f(x)=sin(2x+φ)為R上的偶函數(shù),則φ的值可以是()A. B.C. D.10.下列結(jié)論正確的是()A.不相等的角終邊一定不相同B.,,則C.函數(shù)的定義域是D.對任意的,,都有二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),(1)______(2)若方程有4個實數(shù)根,則實數(shù)的取值范圍是______12.若,則a的取值范圍是___________13.已知銳角三角形的邊長分別為1,3,,則的取值范圍是__________14.為了實現(xiàn)綠色發(fā)展,避免用電浪費,某城市對居民生活用電實行“階梯電價”.計費方法如表所示,若某戶居民某月交納電費227元,則該月用電量為_______度.每戶每月用電量電價不超過210度的部分0.5元/度超過210度但不超過400度的部分0.6元/度超過400度的部分0.8元/度15.寫出一個同時具有下列三個性質(zhì)函數(shù):________.①;②在上單調(diào)遞增;③.16.已知長方體的8個頂點都在球的球面上,若,,,則球的表面積為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)若,求不等式解集;(2)若,求在區(qū)間上的最大值和最小值,并分別寫出取得最大值和最小值時的x值;(3)若對任意,不等式恒成立,求實數(shù)a的取值范圍18.已知是函數(shù)的零點,.(Ⅰ)求實數(shù)的值;(Ⅱ)若不等式在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.19.如圖1所示,在中,分別為的中點,點為線段上的一點,將沿折起到的位置,使如圖2所示.(1)求證://平面;(2)求證:;(3)線段上是否存在點,使平面?請說明理由.20.如圖,已知直線//,是直線、之間的一定點,并且點到直線、的距離分別為1、2,垂足分別為E、D,是直線上一動點,作,且使與直線交于點.試選擇合適的變量分別表示三角形的直角邊和面積S,并求解下列問題:(1)若為等腰三角形,求和的長;(2)求面積S最小值.21.已知圓經(jīng)過(2,5),(﹣2,1)兩點,并且圓心在直線yx上.(1)求圓的標準方程;(2)求圓上的點到直線3x﹣4y+23=0的最小距離.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】按照分段函數(shù)的分類標準,在各個區(qū)間上,構(gòu)造求解,并根據(jù)區(qū)間對所求的解,進行恰當?shù)娜∩峒纯?令,則或,解之得.【點睛】本題主要考查分段函數(shù),屬于基礎(chǔ)題型.2、A【解析】由題意得函數(shù)在上為增函數(shù),函數(shù)在上都為減函數(shù).選A3、D【解析】當,即時,根據(jù)當時,,結(jié)合函數(shù)的奇偶性即可得解.【詳解】解:函數(shù)是定義在上的奇函數(shù),,當時,,當,即時,.故選:D.4、B【解析】由題意,令x=0,則-yb2=1,即y=-b25、C【解析】利用零點存在定理依次判斷各個選項即可.【詳解】由題意知:在上連續(xù)且單調(diào)遞增;對于A,,,內(nèi)不存在零點,A錯誤;對于B,,,內(nèi)不存在零點,B錯誤;對于C,,,則,內(nèi)存在零點,C正確;對于D,,,內(nèi)不存在零點,D錯誤.故選:C.6、B【解析】先根據(jù)角終邊上點的坐標判斷出角的終邊所在象限,然后根據(jù)三角函數(shù)的定義即可求出角的最小正值【詳解】因為,,所以角的終邊在第四象限,根據(jù)三角函數(shù)的定義,可知,故角的最小正值為故選:B【點睛】本題主要考查利用角的終邊上一點求角,意在考查學生對三角函數(shù)定義的理解以及終邊相同的角的表示,屬于基礎(chǔ)題7、B【解析】,有當時函數(shù)為減函數(shù)是定義在上的偶函數(shù)即故選8、A【解析】設(shè)冪函數(shù)為,代入點,得到,判斷函數(shù)的奇偶性和值域得到答案.【詳解】設(shè)冪函數(shù)為,代入點,即,定義域為,為偶函數(shù)且故選:【點睛】本題考查了冪函數(shù)的奇偶性和值域,意在考查學生對于函數(shù)性質(zhì)的綜合應(yīng)用.9、C【解析】根據(jù)三角函數(shù)的奇偶性,即可得出φ的值【詳解】函數(shù)f(x)=sin(2x+φ)為R上的偶函數(shù),則φ=+kπ,k∈Z;所以φ的值可以是.故選C.【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,屬于基礎(chǔ)題10、B【解析】根據(jù)對數(shù)函數(shù)與三角函數(shù)的性質(zhì)依次討論各選項即可得答案.【詳解】解:對于A選項,例如角的終邊相同,但不相等,故錯誤;對于B選項,,,則,故正確;對于C選項,由題,解得,即定義域是,故錯誤;對于D選項,對數(shù)不存在該運算法則,故錯誤;故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、①-2②.【解析】先計算出f(1),再根據(jù)給定的分段函數(shù)即可計算得解;令f(x)=t,結(jié)合二次函數(shù)f(x)性質(zhì),的圖象,利用數(shù)形結(jié)合思想即可求解作答.【詳解】(1)依題意,,則,所以;(2)函數(shù)的值域是,令,則方程在有兩個不等實根,方程化為,因此,方程有4個實數(shù)根,等價于方程在有兩個不等實根,即函數(shù)的圖象與直線有兩個不同的公共點,在同一坐標系內(nèi)作出函數(shù)的圖象與直線,而,如圖,觀察圖象得,當時,函數(shù)與直線有兩個不同公共點,所以實數(shù)的取值范圍是.故答案為:-2;12、【解析】先通過的大小確定的單調(diào)性,再利用單調(diào)性解不等式即可【詳解】解:且,,得,又在定義域上單調(diào)遞減,,,解得故答案為:【點睛】方法點睛:在解決與對數(shù)函數(shù)相關(guān)的解不等式問題時,要優(yōu)先考慮利用對數(shù)函數(shù)的單調(diào)性來求解.在利用單調(diào)性時,一定要明確底數(shù)a的取值對函數(shù)增減性的影響,及真數(shù)必須為正的限制條件13、【解析】由三角形中三邊關(guān)系及余弦定理可得應(yīng)滿足,解得,∴實數(shù)的取值范圍是答案:點睛:根據(jù)三角形的形狀判斷邊滿足的條件時,需要綜合考慮邊的限制條件,在本題中要注意銳角三角形這一條件的運用,必須要考慮到三個內(nèi)角的余弦值都要大于零,并由此得到不等式,進一步得到邊所要滿足的范圍14、410【解析】由題意列出電費(元)關(guān)于用電量(度)的函數(shù),令,代入運算即可得解.【詳解】由題意,電費(元)關(guān)于用電量(度)的函數(shù)為:,即,當時,,若,,則,解得.故答案為:410.15、或其他【解析】找出一個同時具有三個性質(zhì)的函數(shù)即可.【詳解】例如,是單調(diào)遞增函數(shù),,滿足三個條件.故答案為:.(答案不唯一)16、【解析】求得長方體外接球的半徑,從而求得球的表面積.【詳解】由題知,球O的半徑為,則球O的表面積為故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)當時函數(shù)取得最小值,,當時函數(shù)取得最大值;(3)【解析】(1)根據(jù),代入求出參數(shù)的值,再解一元二次不等式即可;(2)首先由求出的值,再根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)在給定區(qū)間上的最值;(3)參變分離可得對任意恒成立,再利用基本不等式求出的最小值,即可得解;【小問1詳解】解:因為且,所以,解得,所以,解,即,即,解得,即原不等式的解集為;【小問2詳解】解:因為,所以,所以,所以,因為,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以當時函數(shù)取得最小值,當時函數(shù)取得最大值;【小問3詳解】解:因為對任意,不等式恒成立,即對任意,不等式恒成立,即對任意恒成立,因為當且僅當,即時取等號;所以,即,所以18、(Ⅰ)1;(Ⅱ);(Ⅲ)【解析】Ⅰ利用是函數(shù)的零點,代入解析式即可求實數(shù)的值;Ⅱ由不等式在上恒成立,利用參數(shù)分類法,轉(zhuǎn)化為二次函數(shù)求最值問題,即可求實數(shù)的取值范圍;Ⅲ原方程等價于,利用換元法,轉(zhuǎn)化為一元二次方程根的個數(shù)進行求解即可【詳解】Ⅰ是函數(shù)的零點,,得;Ⅱ,,則不等式在上恒成立,等價為,,同時除以,得,令,則,,,故的最小值為0,則,即實數(shù)k的取值范圍;Ⅲ原方程等價為,,兩邊同乘以得,此方程有三個不同的實數(shù)解,令,則,則,得或,當時,,得,當,要使方程有三個不同的實數(shù)解,則必須有有兩個解,則,得【點睛】本題主要考查函數(shù)與方程根的問題,利用換元法結(jié)合一元二次方程根的個數(shù),以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:①分離參數(shù)恒成立(即可)或恒成立(即可);②數(shù)形結(jié)合(圖象在上方即可);③討論最值或恒成立;④討論參數(shù),排除不合題意的參數(shù)范圍,篩選出符合題意的參數(shù)范圍.19、(1)見解析(2)見解析(3)見解析【解析】(1)∵DE∥BC,由線面平行的判定定理得出(2)可以先證,得出,∵∴∴(3)Q為的中點,由上問,易知,取中點P,連接DP和QP,不難證出,∴∴,又∵∴20、(1),;(2)2.【解析】(1)根據(jù)相似三角形的判定定理和性質(zhì)定理,結(jié)合等腰三角形的性質(zhì)、勾股定理進行求解即可;(2)根據(jù)直角三角形面積公式,結(jié)合基本不等式進行求解即可.【小問1詳解】由點到直線、的距離分別為1、2,得AE=1、AD=2,由,得,則,由題意得,在中,,從而,由和,得∽,則,即,在中,,在中,,由為等腰三角形,得,則且,故,.【小問2詳解】由,,,得在中,,當且僅當即時等號成立,故面積S的最小值為2.21、(1)(x﹣2)2+(y﹣1)2=16(2)1【解析】(1)先求出圓心的坐標和圓的半徑,即得圓的標準方程;(2)求出圓心到直線3x﹣4y+23=0的距離即得解.【詳解】(1)A(2,5)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 門店食品管理制度
- 自考環(huán)境與資源保護法學真題模擬及答案
- 養(yǎng)老院情感交流制度
- 企業(yè)員工培訓(xùn)與素質(zhì)提升制度
- 重質(zhì)純堿工復(fù)試評優(yōu)考核試卷含答案
- 我國上市公司流動性與資本結(jié)構(gòu)的模型構(gòu)建與實證分析
- 我國上市公司引入雙層股權(quán)結(jié)構(gòu)的法律路徑探析:基于國際經(jīng)驗與本土實踐
- 印染燒毛工復(fù)試強化考核試卷含答案
- 裁剪工安全意識評優(yōu)考核試卷含答案
- 木作文物修復(fù)師安全實踐測試考核試卷含答案
- 鈑金檢驗作業(yè)指導(dǎo)書
- 公司安全大講堂活動方案
- 2025年江蘇省無錫市梁溪區(qū)八下英語期末統(tǒng)考模擬試題含答案
- GB/T 42186-2022醫(yī)學檢驗生物樣本冷鏈物流運作規(guī)范
- 江蘇省南通市2024-2025學年高一上學期1月期末考試數(shù)學試題
- T/CA 105-2019手機殼套通用規(guī)范
- 以真育責:小學生責任教育在求真理念下的探索與實踐
- 2019營口天成消防JB-TB-TC5120 火災(zāi)報警控制器(聯(lián)動型)安裝使用說明書
- 部編版語文六年級上冊第一單元綜合素質(zhì)測評B卷含答案
- 買賣肉合同樣本
- 2025屆高考語文復(fù)習:以《百合花》為例掌握小說考點
評論
0/150
提交評論