湖南師大附中思沁中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
湖南師大附中思沁中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
湖南師大附中思沁中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
湖南師大附中思沁中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
湖南師大附中思沁中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南師大附中思沁中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)拋物線的焦點為F,準線為l,P為拋物線上一點,,A為垂足.如果直線AF的斜率是,那么()A B.C.16 D.82.若直線與圓只有一個公共點,則m的值為()A. B.C. D.3.從1,2,3,4,5中任取2個不同的數(shù),兩數(shù)和為偶數(shù)的概率為()A. B.C. D.4.若動點在方程所表示的曲線上,則以下結(jié)論正確的是()①曲線關(guān)于原點成中心對稱圖形;②動點到坐標原點的距離的取值范圍為;③動點與點的最小距離為;④動點與點的連線斜率的取值范圍是.A.①② B.①②③C.③④ D.①②④5.已知點為雙曲線的左頂點,點和點在雙曲線的右分支上,是等邊三角形,則的面積是A. B.C. D.6.若直線與圓:相切,則()A.-2 B.-2或6C.2 D.-6或27.如圖,在直三棱柱中,,,E是的中點,則直線BC與平面所成角的正弦值為()A. B.C. D.8.“”是“方程表示雙曲線”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.若展開式的二項式系數(shù)之和為,則展開式的常數(shù)項為()A. B.C. D.10.已知直線l與拋物線交于不同的兩點A,B,O為坐標原點,若直線的斜率之積為,則直線l恒過定點()A. B.C. D.11.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件12.校慶當(dāng)天,學(xué)校需要在靠墻的位置用圍欄圍起一個面積為200平方米的矩形場地.用來展示校友的書畫作品.靠墻一側(cè)不需要圍欄,則圍欄總長最小需要()米A.20 B.40C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正三棱柱的底面邊長為2,側(cè)棱長為,則與側(cè)面所成角的正弦值為______14.已知O為坐標原點,拋物線C:的焦點為F,P為C上一點,PF與x軸垂直,Q為x軸上一點,且,若,則______.15.已知雙曲線的兩條漸近線的夾角為,則雙曲線的實軸長為____16.將集合且中所有的元素從小到大排列得到的數(shù)列記為,則___________(填數(shù)值).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,圓C:,直線l:(1)若直線l與圓C相切于點N,求切點N的坐標;(2)若,直線l上有且僅有一點A滿足:過點A作圓C的兩條切線AP、AQ,切點分別為P,Q,且使得四邊形APCQ為正方形,求m的值18.(12分)從①,②,③,這三個條件中任選一個,補充在下面問題中并作答:已知等差數(shù)列公差大于零,且前n項和為,,______,,求數(shù)列的前n項和.(注:如果選擇多個條件分別解答,那么按照第一個解答計分)19.(12分)已知等比數(shù)列的公比,且,的等差中項為5,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.20.(12分)設(shè)a,b是實數(shù),若橢圓過點,且離心率為.(1)求橢圓E的標準方程;(2)過橢圓E的上頂點P分別作斜率為,的兩條直線與橢圓交于C,D兩點,且,試探究過C,D兩點的直線是否過定點?若過定點,求出定點坐標;否則,說明理由.21.(12分)同時擲兩顆質(zhì)地均勻的骰子(六個面分別標有數(shù)字1,2,3,4,5,6的正方體)(1)求兩顆骰子向上的點數(shù)相等的概率;(2)求兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的整數(shù)倍的概率22.(10分)如圖在四棱錐中,底面是菱形,,平面平面,,,為的中點,是棱上的一點,且.(1)求證:平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題可得方程,進而可得點坐標及點坐標,利用拋物線定義即求【詳解】∵拋物線方程為,∴焦點F(2,0),準線l方程為x=?2,∵直線AF的斜率為,直線AF的方程為,由,可得,∵PA⊥l,A為垂足,∴P點縱坐標為,代入拋物線方程,得P點坐標為,∴.故選:D.2、D【解析】利用圓心到直線的距離等于半徑列方程,化簡求得的值.【詳解】圓的圓心為,半徑為,直線與圓只有一個公共點,所以直線與圓相切,所以.故選:D3、B【解析】利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從中任取個不同的數(shù)的方法有,共種,其中和為偶數(shù)的有共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型概率計算,屬于基礎(chǔ)題.4、A【解析】將原方程等價變形為,將方程中的換為,換為,方程不變,可判斷①;利用兩點間的距離公式,結(jié)合二次函數(shù)知識可判斷②和③;取特殊點可判斷④.【詳解】因為等價于,即,對于①,將方程中的換為,換為,方程不變,所以曲線關(guān)于原點成中心對稱圖形,故①正確;對于②,設(shè),則動點到坐標原點的距離,因為,所以,故②正確;對于③,設(shè),動點與點的距離為,因為函數(shù)在上遞減,所以當(dāng)時,函數(shù)取得最小值,從而取得最小值,故③不正確;對于④,當(dāng)時,因為,所以,故④不正確.綜上所述:結(jié)論正確的是:①②.故選:A5、C【解析】設(shè)點在軸上方,由是等邊三角形得直線斜率.又直線過點,故方程為.代入雙曲線方程,得點的坐標為.同理可得,點的坐標為.故的面積為,選C.6、B【解析】利用圓心到直線距離等于半徑得到方程,解出的值.【詳解】圓心為,半徑為,由題意得:,解得:或6.故選:B7、D【解析】以,,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標系,利用向量法即可求出答案.【詳解】解:由題意知,CA,CB,CC1兩兩垂直,以,,的方向分別為x軸、y軸、z軸的正方向,建立如圖所示的空間直角坐標系,則,,,,設(shè)平面的法向量為,則令,得.因為,所以,故直線BC與平面所成角的正弦值為.故選:D.8、A【解析】方程表示雙曲線則,解得,是“方程表示雙曲線”的充分不必要條件.故選:A9、C【解析】利用二項式系數(shù)的性質(zhì)求得的值,再利用二項式展開式的通項公式,求得結(jié)果即可.【詳解】解:因為展開式的二項式系數(shù)之和為,則,所以,令,求得,所以展開式的常數(shù)項為.故選:C.10、A【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到,進而得到的值,將直線的斜率之積為,用A,B點坐標表示出來,結(jié)合的值即可求得答案.【詳解】設(shè)直線方程為,聯(lián)立,整理得:,需滿足,即,則,由,得:,所以,即,故,所以直線l為:,當(dāng)時,,即直線l恒過定點,故選:A.11、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:由,得,反之不成立,如,,滿足,但是不滿足,故“”是“”的充分不必要條件故選:B12、B【解析】在出矩形中,設(shè),得到,結(jié)合基本不等式,即可求解【詳解】如圖所示,在矩形中,設(shè),則,根據(jù)題意,可得矩形圍欄總長為因為,可得,當(dāng)且僅當(dāng)時,即時,等號成立,即圍欄總長最小需要米.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作圖,考慮底面是正三角形,按照線面夾角的定義構(gòu)造直角三角形即可.【詳解】依題意,作圖如下,取的中點G,連結(jié),∵是正三角形,∴,,又∵是正三棱柱,∴底面,∴,即平面,,與平面的夾角=,在中,,故答案為:.14、3【解析】先求點坐標,再由已知得Q點坐標,由列方程得解.【詳解】拋物線:()的焦點,∵P為上一點,與軸垂直,所以P的橫坐標為,代入拋物線方程求得P的縱坐標為,不妨設(shè),因為Q為軸上一點,且,所以Q在F的右側(cè),又,,,因為,所以,,所以3故答案為:3.15、【解析】根據(jù)已知條件求得,由此求得實軸長.【詳解】由于,雙曲線的漸近線方程為,所以雙曲線的漸近線與軸夾角小于,由得,實軸長故答案為:16、992【解析】列舉數(shù)列的前幾項,觀察特征,可得出.詳解】由題意得觀察規(guī)律可得中,以為被減數(shù)的項共有個,因為,所以是中的第5項,所以.故答案為:992.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或(2)3.【解析】(1)設(shè)切點坐標,由切點和圓心連線與切線垂直以及切點在圓上建立關(guān)系式,求解切點坐標即可;(2)由圓的方程可得圓心坐標及半徑,由APCQ為正方形,可得|AC|=可得圓心到直線的距離為,可得m的值【小問1詳解】解:設(shè)切點為,則有,解得:或x0=-2+1y0=-2,所以切點的坐標為或【小問2詳解】解:圓C:的圓心(1,0),半徑r=2,設(shè),由題意可得,由四邊形APCQ為正方形,可得|AC|=,即,由題意直線l⊥AC,圓C:(x﹣1)2+y2=4,則圓心(1,0)到直線的距離,可得,m>0,解得m=3.18、;【解析】將條件①②③轉(zhuǎn)化為的形式,列方程組,并求解,寫出的通項公式,從而表示出,利用裂項相消法求和.【詳解】選①:設(shè)等差數(shù)列首項為,公差為,因為,,所以,所以,所以,所以選②:設(shè)等差數(shù)列首項為,公差為,因為,,所以,所以,所以,所以選③:設(shè)等差數(shù)列首項為,公差為,因為,,所以,所以,所以,所以【點睛】數(shù)列求和的方法技巧(1)倒序相加:用于等差數(shù)列、與二項式系數(shù)、對稱性相關(guān)聯(lián)的數(shù)列的求和(2)錯位相減:用于等差數(shù)列與等比數(shù)列的積數(shù)列的求和(3)分組求和:用于若干個等差或等比數(shù)列的和或差數(shù)列的求和19、(1);(2).【解析】(1)根據(jù)條件列關(guān)于首項與公比的方程組,解得結(jié)果代入等比數(shù)列通項公式即可;(2)利用錯位相減法求和即可.【詳解】解析:(1)由題意可得:,∴∵,∴,∴數(shù)列的通項公式為.(2)∴上述兩式相減可得∴【點睛】本題考查等比數(shù)列通項公式、錯位相減法求和,考查基本分析求解能力,屬中檔題.20、(1);(2)過定點,坐標為.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進行求解即可;(2)根據(jù)直線斜率公式和一元二次方程根與系數(shù)的關(guān)系進行求解即可.【小問1詳解】因為橢圓離心率為,所以有.橢圓過點,所以,由可解:,所以該橢圓方程為:;【小問2詳解】由(1)可知:,設(shè)直線的方程為:,若,由橢圓的對稱性可知:,不符合題意,當(dāng)時,直線的方程與橢圓方程聯(lián)立得:,設(shè),,,因為,所以,把代入得:,所以有或,解得:或,當(dāng)時,直線,直線恒過定點,此時與點重合,不符合題意,當(dāng)時,,直線恒過點,當(dāng)直線不存在斜率時,此時,,因為,所以,兩點不在橢圓上,不符合題意,綜上所述:過C,D兩點的直線過定點,定點坐標為.【點睛】關(guān)鍵點睛:根據(jù)一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.21、(1);(2).【解析】(1)求出同時擲兩顆骰子的基本事件數(shù)、及骰子向上的點數(shù)相等的基本事件數(shù),應(yīng)用古典概型的概率求法,求概率即可.(2)列舉出兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的倍數(shù)的基本事件,應(yīng)用古典概型的概率求法,求概率即可.【小問1詳解】同時擲兩顆骰子包括的基本事件共種,擲兩顆骰子向上的點數(shù)相等包括的基本事件為6種,故所求的概率為;【小問2詳解】兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的倍數(shù)時,用坐標記為,,,,,,,,,,,,,,,,共包括16個基本事件,故兩顆骰子向上的點數(shù)不相等,且一個點數(shù)是另一個點數(shù)的倍數(shù)有的概率為.22、(1)見解析;(2).【解析】(1)推導(dǎo)出PQ⊥AD,從而PQ⊥平面ABCD,連接AC,交BQ于N,連接MN,則AQ∥BC,推導(dǎo)出MN∥PA,由此能證明PA∥平面BMQ(2)連結(jié)BD,以Q為坐標原點,以QA、QB、QP分別為x軸,y軸,z軸,建立空間直角坐標系,利用向量法能求出二面角M﹣BQ﹣P的余弦值【詳解】(1)由已知PA=PD,Q為AD的中點,∴PQ⊥AD,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,PQ?面PAD,∴PQ⊥平面ABCD,連接AC,交BQ于N,連接MN,∵底面ABCD是菱形,∴AQ∥BC,∴△A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論