版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2.2.3用平面向量坐標(biāo)表示向量共線條件目標(biāo)導(dǎo)航課標(biāo)要求1.會(huì)用坐標(biāo)表示平面向量共線條件.2.運(yùn)用向量共線條件,解決有關(guān)的幾何問題.素養(yǎng)達(dá)成通過學(xué)習(xí)用向量的坐標(biāo)表示共線向量的條件,使學(xué)生了解坐標(biāo)的運(yùn)算更為方便,因?yàn)橄蛄康墓簿€就是坐標(biāo)成比例,那么對所求參數(shù)就容易列方程求解.新知探求課堂探究新知探求·素養(yǎng)養(yǎng)成知識探究a1b2-a2b1=0兩向量平行的條件(1)設(shè)a=(a1,a2),b=(b1,b2),則a∥b?
.(2)設(shè)a=(a1,a2),b=(b1,b2),如果向量b不平行于坐標(biāo)軸,即b1≠0,b2≠0,則a∥b?
.用語言可以表述為:兩個(gè)向量平行的條件是
.相應(yīng)坐標(biāo)成比例【拓展延伸】兩向量共線的表示方法及作用(1)兩個(gè)向量a=(x1,y1)和b=(x2,y2)共線的條件有以下三種表示方法.①當(dāng)b≠0時(shí),a=λb.這是幾何運(yùn)算,體現(xiàn)了向量a與b的長度及方向之間的關(guān)系.②x1y2-x2y1=0.這是代數(shù)運(yùn)算,用它解決向量的共線問題,好處在于不需要引入?yún)?shù)“λ”,從而減少未知數(shù)個(gè)數(shù),而且使問題解決具有代數(shù)化的特點(diǎn),程序化的特征.③當(dāng)x2y2≠0時(shí),=,即兩向量的相應(yīng)坐標(biāo)成比例.通過這種形式較易記住向量共線的坐標(biāo)表示,而且不易出現(xiàn)搭配錯(cuò)誤.溫馨提示:前兩種方法本質(zhì)是一致的.第三種方法是第二種方法的變式.我們可以利用第三種方法記憶.在研究兩向量平行時(shí),若坐標(biāo)已知,用第二種方法更簡單一些.(2)兩向量共線的坐標(biāo)表示有以下兩個(gè)方面的作用①已知兩個(gè)向量的坐標(biāo)判定兩向量共線.聯(lián)系平面幾何平行、共線知識,可以證明三點(diǎn)共線、直線平行等幾何問題.要注意區(qū)分向量的共線、平行與幾何中的共線、平行.②已知兩個(gè)向量共線,求點(diǎn)或向量的坐標(biāo),求參數(shù)的值,求軌跡方程.要注意方程思想的應(yīng)用,向量共線的條件,向量相等的條件等都可作為列方程的依據(jù).自我檢測B1.若三點(diǎn)A(1,1),B(2,-4),C(x,-9)共線,則x的值為(
)(A)1 (B)3 (C) (D)512.設(shè)向量a=(2,4)與向量b=(x,6)共線,則實(shí)數(shù)x等于(
)(A)2 (B)3 (C)4 (D)6B解析:由向量a=(2,4)與向量b=(x,6)共線,可得4x=2×6,解得x=3.故選B.B答案:2類型一向量共線的坐標(biāo)表示課堂探究·素養(yǎng)提升【例1】設(shè)i,j分別是與x軸,y軸方向相同的兩個(gè)單位向量,a=i-(2m-1)j,b=2i+mj(m∈R),若a∥b,求向量a,b的坐標(biāo).思路點(diǎn)撥:利用向量共線的條件,設(shè)a=λb(λ∈R).由平面向量基本定理建立m的關(guān)系式,求m值進(jìn)而可得向量坐標(biāo).方法技巧在坐標(biāo)平面內(nèi),用i,j作基底表示向量a,利用平面向量基本定理及向量坐標(biāo)的定義求a的坐標(biāo)是解決這類問題的一種最基本的方法.類型二兩向量平行的判定及應(yīng)用思路點(diǎn)撥:類型三三點(diǎn)共線問題思路點(diǎn)撥:本題可以直接利用向量共線的條件來求解;也可以根據(jù)i,j分別是x軸、y軸正方向上的單位向量,利用向量的直角坐標(biāo)進(jìn)行運(yùn)算.方法技巧利用向量證明三點(diǎn)共線的思路是:先利用三點(diǎn)構(gòu)造出兩個(gè)向量,然后利用平行向量定理的幾何運(yùn)算或坐標(biāo)運(yùn)算解決.要注意向量共線的一般表示與坐標(biāo)表示雖然形式不同,但實(shí)質(zhì)一樣,在解決具體問題時(shí)要注意選擇使用.類型四易錯(cuò)辨析—錯(cuò)用共線的條件致錯(cuò)【例4】已知a=(3,2-m)與b=(m,-m)平行,求m的值.正解:a∥b?3(-m)-(2-m)m=0,所以m2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 管事部衛(wèi)生管理制度
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院婦保工作制度
- 農(nóng)村衛(wèi)生間運(yùn)維管理制度
- 衛(wèi)生院冷鏈專人管理制度
- IATF16949標(biāo)準(zhǔn)條文解說
- 環(huán)境衛(wèi)生服務(wù)隊(duì)工作制度
- 公司清潔衛(wèi)生員管理制度
- 衛(wèi)生共青團(tuán)工作制度
- 衛(wèi)生院安全教育制度
- 日本美容院衛(wèi)生制度
- 國企內(nèi)審面試題目及答案
- 瑞幸食品安全培訓(xùn)題庫課件
- 腰果介紹教學(xué)課件
- 中考微機(jī)題型
- 仇永鋒一針鎮(zhèn)痛課件
- 中小學(xué)校食堂建設(shè)配置標(biāo)準(zhǔn)(試行)
- 2025年歷年水利部面試真題及答案解析
- 露天礦物開采輔助工技術(shù)考核試卷及答案
- 公路膨脹土路基設(shè)計(jì)與施工技術(shù)規(guī)范(JTGT333107-2024)
- 2025版廉政知識測試題庫(含答案)
- 磁力泵無泄漏市場前景磁鐵試題(附答案)
評論
0/150
提交評論