版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省廣州市番禺區(qū)廣東第二師范學(xué)院番禺附中2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條2.已知數(shù)列滿足:,數(shù)列的前n項和為,若恒成立,則的取值范圍是()A. B.C. D.3.已知圓,則圓上的點到坐標(biāo)原點的距離的最小值為()A.-1 B.C.+1 D.64.某幾何體的三視圖如圖所示,則該幾何體的體積為A.54 B.45C.27 D.815.已知函數(shù)的導(dǎo)函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A B.C. D.6.中國景德鎮(zhèn)陶瓷世界聞名,其中青花瓷最受大家的喜愛,如圖1這個精美的青花瓷花瓶,它的頸部(圖2)外形上下對稱,基本可看作是離心率為的雙曲線的一部分繞其虛軸所在直線旋轉(zhuǎn)所形成的曲面,若該頸部中最細(xì)處直徑為16厘米,瓶口直徑為20厘米,則頸部高為()A.10 B.20C.30 D.407.埃及胡夫金字塔是古代世界建筑奇跡之一,它的形狀可視為一個正四棱錐,以該四棱錐的高為邊長的正方形面積等于該四棱錐一個側(cè)面三角形的面積,則其側(cè)面三角形底邊上的高與底面正方形的邊長的比值為()A. B.C. D.8.雙曲線的左頂點為,右焦點,若直線與該雙曲線交于、兩點,為等腰直角三角形,則該雙曲線離心率為()A. B.C. D.9.如圖所示,已知三棱錐,點,分別為,的中點,且,,,用,,表示,則等于()A. B.C. D.10.已知橢圓方程為,點在橢圓上,右焦點為F,過原點的直線與橢圓交于A,B兩點,若,則橢圓的方程為()A. B.C. D.11.如果,那么下面一定成立的是()A. B.C. D.12.①直線在軸上的截距為;②直線的傾斜角為;③直線必過定點;④兩條平行直線與間的距離為.以上四個命題中正確的命題個數(shù)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.我國南北朝時期的數(shù)學(xué)家祖暅提出了一個原理“冪勢既同,則積不容異”,即夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.現(xiàn)有某幾何體和一個圓錐滿足祖暅原理的條件,若該圓錐的側(cè)面展開圖是一個半徑為2的半圓,則該幾何體的體積為________.14.已知焦點在軸上的雙曲線,其漸近線方程為,焦距為,則該雙曲線的標(biāo)準(zhǔn)方程為________15.在圓M:中,過點的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為___________.16.設(shè)公差的等差數(shù)列的前項和為,已知,且,,成等比數(shù)列,則的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列為等差數(shù)列,是公比為2的等比數(shù)列,且滿足(1)求數(shù)列和的通項公式;(2)令求數(shù)列的前n項和;18.(12分)已知二次函數(shù).(1)若時,不等式恒成立,求實數(shù)a的取值范圍;(2)解關(guān)于x的不等式(其中).19.(12分)設(shè),為雙曲線:(,)的左、右頂點,直線過右焦點且與雙曲線的右支交于,兩點,當(dāng)直線垂直于軸時,△為等腰直角三角形(1)求雙曲線的離心率;(2)若雙曲線左支上任意一點到右焦點點距離的最小值為3,①求雙曲線方程;②已知直線,分別交直線于,兩點,當(dāng)直線傾斜角變化時,以為直徑的圓是否過軸上的定點,若過定點,求出定點的坐標(biāo);若不過定點,請說明理由20.(12分)2021年10月16日,搭載“神舟十三號”的火箭發(fā)射升空,有很多民眾通過手機、電視等方式觀看有關(guān)新聞.某機構(gòu)將關(guān)注這件事的時間在2小時以上的人稱為“天文愛好者”,否則稱為“非天文愛好者”,該機構(gòu)通過調(diào)查,從參與調(diào)查的人群中隨機抽取100人進(jìn)行分析,得到下表(單位:人):天文愛好者非天文愛好者合計女203050男351550合計5545100(1)能否有99%的把握認(rèn)為“天文愛好者”或“非天文愛好者”與性別有關(guān)?(2)現(xiàn)從抽取的女性人群中,按“天文愛好者”和“非天文愛好者”這兩種類型進(jìn)行分層抽樣抽取5人,然后再從這5人中隨機選出3人,記其中“天文愛好者”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望附:,其中n=a+b+c+d0.100.050.0100.0050.0012.7063.8416.6357.87910.82821.(12分)已知離心率為的橢圓經(jīng)過點.(1)求橢圓的方程;(2)若不過點的直線交橢圓于兩點,求面積的最大值.22.(10分)如圖,正方體的棱長為4,E,F(xiàn)分別是上的點,且.(1)求與平面所成角的正切值;(2)求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結(jié)合雙曲線的漸近線的性質(zhì),即可求解.【詳解】當(dāng)直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當(dāng)直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關(guān)系,以及雙曲線的漸近線的性質(zhì),其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應(yīng)用,屬于基礎(chǔ)題.2、D【解析】由于,所以利用裂項相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因為,當(dāng)且僅當(dāng),即時取等號,所以故選:D3、A【解析】先求出圓心和半徑,求出圓心到坐標(biāo)原點的距離,從而求出圓上的點到坐標(biāo)原點的距離的最小值.【詳解】變形為,故圓心為,半徑為1,故圓心到原點的距離為,故圓上的點到坐標(biāo)原點的距離最小值為.故選:A4、B【解析】由三視圖可得該幾何體是由平行六面體切割掉一個三棱錐而成,直觀圖如圖所示,所以該幾何體的體積為故選B點睛:本題考查了組合體的體積,由三視圖還原出幾何體,由四棱柱的體積減去三棱錐的體積.5、D【解析】根據(jù)導(dǎo)函數(shù)大于,原函數(shù)單調(diào)遞增;導(dǎo)函數(shù)小于,原函數(shù)單調(diào)遞減;即可得出正確答案.【詳解】由導(dǎo)函數(shù)得圖象可得:時,,所以在單調(diào)遞減,排除選項A、B,當(dāng)時,先正后負(fù),所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.6、B【解析】設(shè)雙曲線方程為,根據(jù)已知條件可得的值,由可得雙曲線的方程,再將代入方程可得的值,即可求解.【詳解】因為雙曲線焦點在軸上,設(shè)雙曲線方程為由雙曲線的性質(zhì)可知:該頸部中最細(xì)處直徑為實軸長,所以,可得,因為離心率為,即,可得,所以,所以雙曲線的方程為:,因瓶口直徑為20厘米,根據(jù)對稱性可知頸部最右點橫坐標(biāo)為,將代入雙曲線可得,解得:,所以頸部高為,故選:B7、C【解析】設(shè),利用得到關(guān)于的方程,解方程即可得到答案.【詳解】如圖,設(shè),則,由題意,即,化簡得,解得(負(fù)值舍去).故選:C【點晴】本題主要考查正四棱錐的概念及其有關(guān)計算,考查學(xué)生的數(shù)學(xué)計算能力,是一道容易題.8、A【解析】求出,分析可得,可得出關(guān)于、、的齊次等式,由此可求得該雙曲線的離心率的值.【詳解】聯(lián)立,可得,則,易知點、關(guān)于軸對稱,且為線段的中點,則,又因為為等腰直角三角形,所以,,即,即,所以,,可得,因此,該雙曲線的離心率為.故選:A.9、A【解析】連接,先根據(jù)已知條件表示出,再根據(jù)求得結(jié)果.【詳解】連接,如下圖所示:因為為的中點,所以,又因為為的中點,所以,所以,故選:A.10、A【解析】根據(jù)橢圓的性質(zhì)可得,則橢圓方程可求.【詳解】由點在橢圓上得,由橢圓的對稱性可得,則,故橢圓方程為.故選:A.11、C【解析】根據(jù)不等式的基本性質(zhì),以及特例法和作差比較法,逐項計算,即可求解.【詳解】對于A中,當(dāng)時,,所以不正確;對于B中,因為,根據(jù)不等式的性質(zhì),可得,對于C中,由,可得可得,所以,所以正確;對于D中,由,可得,則,所以,所以不正確.故選:C.12、B【解析】由直線方程的性質(zhì)依次判斷各命題即可得出結(jié)果.【詳解】對于①,直線,令,則,直線在軸上的截距為-,則①錯誤;對于②,直線的斜率為,傾斜角為,則②正確;對于③直線,由點斜式方程可知直線必過定點,則③正確;對于④,兩條平行直線與間的距離為,則④錯誤.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)圓錐的側(cè)面展開圖是一個半徑為2的半圓,由,求得底面半徑,進(jìn)而得到高,再利用錐體的體積公式求解.【詳解】設(shè)圓錐的母線長為l,高為h,底面半徑為r,因為圓錐的側(cè)面展開圖是一個半徑為2的半圓,所以,解得,所以,所以圓錐的體積為:,故該幾何體的體積為,故答案為:14、【解析】根據(jù)漸近線方程、焦距可得,,再根據(jù)雙曲線參數(shù)關(guān)系、焦點的位置寫出雙曲線標(biāo)準(zhǔn)方程.詳解】由題設(shè),可知:,,∴由,可得,,又焦點在軸上,∴雙曲線的標(biāo)準(zhǔn)方程為.故答案為:.15、【解析】首先將圓的方程配成標(biāo)準(zhǔn)式,即可得到圓心坐標(biāo)與半徑,從而可得點在圓內(nèi),即可得到過點的最長弦、最短弦弦長,即可求出四邊形的面積;【詳解】解:圓M:,即,圓心,半徑,點,則,所以點在圓內(nèi),所以過點的最長弦,又,所以最短弦,所以故答案為:16、##0.4【解析】應(yīng)用等比中項的性質(zhì)及等差數(shù)列通項公式求公差d,進(jìn)而寫出等差數(shù)列的通項公式、前n項和公式,再求目標(biāo)式的最小值.【詳解】由題設(shè),,則,整理得,又,解得,故,,所以,故當(dāng)時目標(biāo)式有最小值為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)根據(jù)等差數(shù)列和等比數(shù)列通項公式得到,根據(jù)通項公式的求法得到結(jié)果;(2)分組求和即可.【小問1詳解】設(shè)的公差為,由已知,有解得,所以的通項公式為,的通項公式為.【小問2詳解】,分組求和,分別根據(jù)等比數(shù)列求和公式與等差數(shù)列求和公式得到:.18、(1)(2)答案見解析【解析】(1)當(dāng)時將原不等式變形為,根據(jù)基本不等式計算即可;(2)將原不等式化為,求出參數(shù)a分別取值、、時的解集.【小問1詳解】不等式即為:,當(dāng)時,不等式可變形為:,因為,當(dāng)且僅當(dāng)時取等號,所以,所以實數(shù)a的取值范圍是;【小問2詳解】不等式,即,等價于,轉(zhuǎn)化為;當(dāng)時,因為,所以不等式的解集為;當(dāng)時,因為,所以不等式的解集為;當(dāng)時,因為,所以不等式的解集為;綜上所述,當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為.19、(1);(2)①;②定點有兩個,【解析】(1)由雙曲線方程有、、,根據(jù)已知條件有,即可求離心率.(2)①由題設(shè)有,結(jié)合(1)求雙曲線參數(shù),寫出雙曲線方程即可;②由題設(shè)可設(shè)為,,,聯(lián)立雙曲線方程結(jié)合韋達(dá)定理求,,,,再由、的方程求,坐標(biāo),若在為直徑的圓上點,由結(jié)合向量垂直的坐標(biāo)表示列方程,進(jìn)而求出定點坐標(biāo).【小問1詳解】由題設(shè),若,且,又△為等腰直角三角形,∴,即,則又,可得.【小問2詳解】由題設(shè),,由(1)有,則,即,①由上可知:雙曲線方程為.②由①知:,且直線的斜率不為0,設(shè)為,,,聯(lián)立直線與雙曲線得:,∴,,則,∴,∴直線為;直線為;∴,,若在為直徑的圓上點,∴,且,∴,令,則,∴,即,∴或,即過定點.【點睛】關(guān)鍵點點睛:第二問的②,設(shè)直線為,聯(lián)立直線與雙曲線,應(yīng)用韋達(dá)定理求,,,,進(jìn)而根據(jù)、的方程求,坐標(biāo),再由圓的性質(zhì)及向量垂直的坐標(biāo)表示求定點坐標(biāo).20、(1)有(2)分布列見解析,【解析】(1)依題意由列聯(lián)表計算出卡方,與參考數(shù)值比較,即可判斷;(2)按照分層抽樣得到有2人為“天文愛好者”,有3人為“非天文愛好者”,記“天文愛好者”的人數(shù)為X,則X的可能值為0,1,2,即可求出所對應(yīng)的概率,從而得到分布列與數(shù)學(xué)期望;【小問1詳解】解:由題意,所以有99%的把握認(rèn)為“天文愛好者”或“非天文愛好者”與性別有關(guān).【小問2詳解】解:抽取的100人中女性人群有50人,其中“天文愛好者”有20人,“非天文愛好者”有30人,所以按分層抽樣在50個女性人群中抽取5人,則有2人為“天文愛好者”,有3人為“非天文愛好者”再從這5人中隨機選出3人,記其中“天文愛好者”的人數(shù)為X,則X的可能值為0,1,2,∴,,,X的分布列如下表:X012P21、(1);(2).【解析】(1)根據(jù),可設(shè),,求出,得到橢圓的方程,代入點的坐標(biāo),求出,即可得出結(jié)果.(2)設(shè)出點,的坐標(biāo),直線與橢圓方程聯(lián)立,利用韋達(dá)定理求出弦長,由點到直線的距離公式,三角形的面積公式及基本不等式可得結(jié)論.【詳解】(1)因為,所以設(shè),,則,橢圓的方程為.代入點的坐標(biāo)得,,所以橢圓的方程為.(2)設(shè)點,的坐標(biāo)分別為,,由,得,即,,,,.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高級動物疫病防治員模擬題+參考答案
- (新)國家義務(wù)教育質(zhì)量監(jiān)測心理健康測考試試題練習(xí)題及答案解析
- 德育骨干教師試題及答案
- 初中語文教師素養(yǎng)試題及答案
- 2026高校區(qū)域技術(shù)轉(zhuǎn)移轉(zhuǎn)化中心(福建)新型功能材料分中心招聘5人備考題庫附答案
- 上海煙草集團(tuán)有限責(zé)任公司2026年應(yīng)屆生招聘備考題庫附答案
- 樂平市市屬國資控股集團(tuán)有限公司面向社會公開招聘人員【15人】備考題庫必考題
- 北京科技大學(xué)智能科學(xué)與技術(shù)學(xué)院招聘3人考試備考題庫必考題
- 古藺縣2025年公開招募新興領(lǐng)域黨建工作專員的參考題庫附答案
- 城發(fā)水務(wù)(固始)有限公司招聘11人(河南)考試備考題庫必考題
- 老年癡呆科普課件整理
- 2022年鈷資源產(chǎn)業(yè)鏈全景圖鑒
- von frey絲K值表完整版
- 勾股定理復(fù)習(xí)導(dǎo)學(xué)案
- GB/T 22900-2022科學(xué)技術(shù)研究項目評價通則
- SB/T 11094-2014中藥材倉儲管理規(guī)范
- GB/T 6418-2008銅基釬料
- GB/T 16621-1996母樹林營建技術(shù)
- GB/T 14518-1993膠粘劑的pH值測定
- GB/T 14072-1993林木種質(zhì)資源保存原則與方法
- 垃圾分類科普指南課件(21張PPT)
評論
0/150
提交評論