版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省西華縣2026屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知一個(gè)圓錐的體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.2.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個(gè)高階等差數(shù)列,其前6項(xiàng)分別為1,5,11,21,37,61,則該數(shù)列的第7項(xiàng)為()A.95 B.131C.139 D.1413.已知函數(shù),為的導(dǎo)數(shù),則()A.-1 B.1C. D.4.設(shè)是周期為2的奇函數(shù),當(dāng)時(shí),,則()A. B.C. D.5.已知拋物線的焦點(diǎn)為,過點(diǎn)的直線交拋物線于,兩點(diǎn),則的取值范圍是()A. B.C. D.6.用這3個(gè)數(shù)組成沒有重復(fù)數(shù)字的三位數(shù),則事件“這個(gè)三位數(shù)是偶數(shù)”與事件“這個(gè)三位數(shù)大于342”()A.是互斥但不對(duì)立事件 B.不是互斥事件C.是對(duì)立事件 D.是不可能事件7.阿基米德(公元前287年~公元前212年)不僅是著名物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A B.C. D.8.圓與圓的位置關(guān)系是()A.相離 B.內(nèi)含C.相切 D.相交9.在數(shù)列中,,則()A. B.C.2 D.110.設(shè)數(shù)列的前項(xiàng)和為,數(shù)列是公比為2的等比數(shù)列,且,則()A.255 B.257C.127 D.12911.已知各項(xiàng)均為正數(shù)的等比數(shù)列滿足,若存在兩項(xiàng),使得,則的最小值為()A.4 B.C. D.912.曲線在點(diǎn)處的切線方程是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知線段AB的長(zhǎng)度為3,其兩個(gè)端點(diǎn)A,B分別在x軸、y軸上滑動(dòng),點(diǎn)M滿足.則點(diǎn)M的軌跡方程為______14.已知數(shù)列的前n項(xiàng)和為,則取得最大值時(shí)n的值為__________________15.已知橢圓的弦AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn),則直線AB的斜率與直線OM的斜率之積等于_________16.與直線平行,且距離為的直線方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對(duì)邊分別為,已知,,且.(1)求角的大??;(2)若,面積為,試判斷的形狀,并說明理由.18.(12分)已知點(diǎn)是圓:上任意一點(diǎn),是圓內(nèi)一點(diǎn),線段的垂直平分線與半徑相交于點(diǎn)(1)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;(2)設(shè)不經(jīng)過坐標(biāo)原點(diǎn),且斜率為的直線與曲線相交于,兩點(diǎn),記,的斜率分別是,.當(dāng),都存在且不為時(shí),試探究是否為定值?若是,求出此定值;若不是,請(qǐng)說明理由19.(12分)我們知道:當(dāng)是圓O:上一點(diǎn),則圓O的過點(diǎn)的切線方程為;當(dāng)是圓O:外一點(diǎn),過作圓O的兩條切線,切點(diǎn)分別為,則方程表示直線AB的方程,即切點(diǎn)弦所在直線方程.請(qǐng)利用上述結(jié)論解決以下問題:已知圓C的圓心在x軸非負(fù)半軸上,半徑為3,且與直線相切,點(diǎn)在直線上,過點(diǎn)作圓C的兩條切線,切點(diǎn)分別為.(1)求圓C的方程;(2)當(dāng)時(shí),求線段AB的長(zhǎng);(3)當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),求線段AB長(zhǎng)度的最小值.20.(12分)如圖,在三棱錐中,側(cè)面PAB是邊長(zhǎng)為4的正三角形且與底面ABC垂直,點(diǎn)D,E,F(xiàn),H分別是棱PA,AB,BC,PC的中點(diǎn)(1)若點(diǎn)G在棱BC上,且BG=3GC,求證:平面∥平面DHG;(2)若AC=2,,求二面角的余弦值21.(12分)如圖,已知正方體的棱長(zhǎng)為2,,,分別為,,的中點(diǎn)(1)求直線與直線所成角余弦值;(2)求點(diǎn)到平面的距離22.(10分)2021年11月初某市出現(xiàn)新冠病毒感染者,該市教育局部署了“停課不停學(xué)”的行動(dòng),老師們立即開展了線上教學(xué).某中學(xué)為了解教學(xué)效果,于11月30日復(fù)課第一天安排了測(cè)試,數(shù)學(xué)教師為了調(diào)查高二年級(jí)學(xué)生這次測(cè)試的數(shù)學(xué)成績(jī)與每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)之間的相關(guān)關(guān)系,對(duì)在校高二學(xué)生隨機(jī)抽取45名進(jìn)行調(diào)查,了解到其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過1小時(shí),并得到如下的統(tǒng)計(jì)圖:(1)根據(jù)統(tǒng)計(jì)圖填寫下面列聯(lián)表,是否有95%的把握認(rèn)為“高二學(xué)生的這次摸底考試數(shù)學(xué)成績(jī)與其每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)有關(guān)”;數(shù)學(xué)成績(jī)不超過120分?jǐn)?shù)學(xué)成績(jī)超過120分總計(jì)每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)不超過1小時(shí)25每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過1小時(shí)總計(jì)45(2)從被抽查的,且這次數(shù)學(xué)成績(jī)超過120分的學(xué)生中,按分層抽樣的方法抽取5名,再?gòu)倪@5名同學(xué)中隨機(jī)抽取2名,求這兩名同學(xué)中至多有一名每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)超過1小時(shí)的概率附:,其中.參考數(shù)據(jù):0.1000.0500.0100.0012.7063.8416.63510.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】設(shè)圓錐的母線長(zhǎng)為R,底面半徑長(zhǎng)為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計(jì)算可得,利用扇形的面積公式計(jì)算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長(zhǎng)為R,底面半徑長(zhǎng)為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B2、A【解析】利用已知條件,推出數(shù)列的差數(shù)的差組成的數(shù)列是等差數(shù)列,轉(zhuǎn)化求解即可【詳解】由題意可知,1,5,11,21,37,61,……,的差的數(shù)列為4,6,10,16,24,……,則這個(gè)數(shù)列的差組成的數(shù)列為:2,4,6,8,……,是一個(gè)等差數(shù)列,設(shè)原數(shù)列的第7項(xiàng)為,則,解得,所以原數(shù)列的第7項(xiàng)為95,故選:A3、B【解析】由導(dǎo)數(shù)的乘法法則救是導(dǎo)函數(shù)后可得結(jié)論【詳解】解:由題意,,所以.故選:B4、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質(zhì)通過得結(jié)論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點(diǎn)睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎(chǔ)題.此類題型,求函數(shù)值時(shí),一般先用周期性化自變量到已知區(qū)間關(guān)于原點(diǎn)對(duì)稱的區(qū)間,然后再由奇函數(shù)性質(zhì)求得函數(shù)值5、B【解析】當(dāng)直線斜率存在時(shí),設(shè)直線方程,聯(lián)立方程組,結(jié)合根與系數(shù)關(guān)系可得,進(jìn)而求得取值范圍,當(dāng)斜率不存在是,可得,兩點(diǎn)坐標(biāo),進(jìn)而可得的值.【詳解】當(dāng)直線斜率存在時(shí),設(shè)直線方程為,,,聯(lián)立方程,得,恒成立,則,,,,,所以,當(dāng)直線斜率不存在時(shí),直線方程為,所以,,,綜上所述:,故選:B.6、B【解析】根據(jù)題意列舉出所有可能性,進(jìn)而根據(jù)各類事件的定義求得答案.【詳解】由題意,將2,3,4組成一個(gè)沒有重復(fù)數(shù)字的三位數(shù)的情況有:{234,243,324,342,423,432},其中偶數(shù)有{234,324,342,432},大于342的有{423,432}.所以兩個(gè)事件不是互斥事件,也不是對(duì)立事件.故選:B.7、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.8、D【解析】先由圓的方程得出兩圓的圓心坐標(biāo)和半徑,求出兩圓心間的距離與兩半徑之和與差比較可得答案.【詳解】圓的圓心為,半徑為圓的圓心為,半徑為兩圓心間的距離為由,所以兩圓相交.故選:D9、A【解析】利用條件可得數(shù)列為周期數(shù)列,再借助周期性計(jì)算得解.【詳解】∵∴,,所以數(shù)列是以3為周期的周期數(shù)列,∴,故選:A.10、C【解析】由題設(shè)可得,再由即可求值.【詳解】由數(shù)列是公比為2的等比數(shù)列,且,∴,即,∴.故選:C.11、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【詳解】因?yàn)楦黜?xiàng)均為正數(shù)的等比數(shù)列滿足,可得,即解得或(舍去)∵,,∴=當(dāng)且僅當(dāng),即m=2,n=4時(shí),等號(hào)成立故的最小值等于.故選:C【點(diǎn)睛】方法點(diǎn)睛:本題主要考查等比數(shù)列的通項(xiàng)公式和基本不等式的應(yīng)用,解題的關(guān)鍵是常量代換的技巧,所謂常量代換,就是把一個(gè)常數(shù)用代數(shù)式來代替,如,再把常數(shù)6代換成已知中的m+n,即.常量代換是基本不等式里常用的一個(gè)技巧,可以優(yōu)化解題,提高解題效率.12、D【解析】先求導(dǎo)數(shù),得切線的斜率,再根據(jù)點(diǎn)斜式得切線方程.【詳解】,選D.點(diǎn)睛】本題考查導(dǎo)數(shù)幾何意義以及直線點(diǎn)斜式方程,考查基本求解能力,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)出動(dòng)點(diǎn),根據(jù)已知條件得到關(guān)于的方程.【詳解】設(shè),由,有,得,所以,由得:,所以點(diǎn)的軌跡的方程是.故答案為:14、①.13②.##3.4【解析】由題可得利用函數(shù)的單調(diào)性可得取得最大值時(shí)n的值,然后利用,即求.【詳解】∵,∴當(dāng)時(shí),單調(diào)遞減且,當(dāng)時(shí),單調(diào)遞減且,∴時(shí),取得最大值,∴.故答案為:13;.15、【解析】根據(jù)點(diǎn)是弦的中點(diǎn),為坐標(biāo)原點(diǎn),利用點(diǎn)差法求解.【詳解】設(shè),且,則,(1),(2)得:,,.又,,.故答案為:16、或【解析】由題意,設(shè)所求直線方程為,根據(jù)兩平行直線間的距離公式即可求解.【詳解】解:由題意,設(shè)所求直線方程為,因?yàn)橹本€與直線的距離為,所以,解得或,所以所求直線方程為或,故答案為:或.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)為等邊三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,從而得角A;(2)由S△ABC=bcsinA=,可得bc=3,①;再由余弦定理a2=b2+c2﹣2bccosA可得b2+c2=6,②;聯(lián)立①②可求得b=c=,從而可判斷△ABC的形狀【詳解】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0∵0<B<π,∴sinB≠0,∴cosA=.∵0<A<π,∴A=(2)△ABC為等邊三角形,∵S△ABC=bcsinA=,即bcsin=,∴bc=3,①∵a2=b2+c2﹣2bccosA,A=,a=,∴b2+c2=6,②由①②得b=c=,∴△ABC為等邊三角形【點(diǎn)睛】本題考查三角形形狀的判斷,著重考查正弦定理與余弦定理的應(yīng)用,考查方程思想與運(yùn)算求解能力,屬于中檔題18、(1);(2)是定值,.【解析】(1)根據(jù)給定條件探求得,再借助橢圓定義直接求得軌跡的方程.(2)設(shè)出直線的方程,再與軌跡的方程聯(lián)立,借助韋達(dá)定理計(jì)算作答.【小問1詳解】圓:的圓心,半徑,因線段的垂直平分線與半徑相交于點(diǎn),則,而,于是得,因此,點(diǎn)的軌跡是以C,A為左右焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓,短半軸長(zhǎng)有,所以軌跡的方程為.【小問2詳解】依題意,設(shè)直線的方程為:,,由消去y并整理得:,,則且,設(shè),則有,,因直線,的斜率,都存在且不為,因此,且,,,所以直線,的斜率,都存在且不為時(shí),是定值,這個(gè)定值是.【點(diǎn)睛】方法點(diǎn)睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無關(guān)(2)直接推理、計(jì)算,并在計(jì)算推理的過程中消去變量,從而得到定值19、(1);(2);(3)4.【解析】(1)根據(jù)圓圓心和半徑設(shè)圓的標(biāo)準(zhǔn)方程為,利用圓心到切線的距離等于圓的半徑即可求出a;(2)根據(jù)題意寫出AB的方程,根據(jù)垂徑定理即可求出弦長(zhǎng);(3)根據(jù)題意求出AB經(jīng)過的定點(diǎn)Q,當(dāng)CQ垂直于AB時(shí),AB最短.【小問1詳解】由題,設(shè)圓C的標(biāo)準(zhǔn)方程為,則,解得.故圓C方程為;【小問2詳解】根據(jù)題意可知,直線的方程為,即,圓心C到直線的距離為,故弦長(zhǎng);【小問3詳解】設(shè),則,又直線方程為:,故直線過定點(diǎn)Q,設(shè)圓心C到直線距離為,則,故當(dāng)最大時(shí),最短,而,故與垂直時(shí)最大,此時(shí),,∴線段長(zhǎng)度的最小值4.20、(1)證明見解析;(2).【解析】(1)由中位線的性質(zhì)可得、、,再由線面平行的判定可證平面PEF、平面PEF,最后根據(jù)面面平行的判定證明結(jié)論.(2)應(yīng)用勾股定理、等邊三角形的性質(zhì)、面面和線面垂直的性質(zhì)可證、、兩兩垂直,構(gòu)建空間直角坐標(biāo)系,求面BPC、面PCA的法向量,再應(yīng)用空間向量夾角的坐標(biāo)表示求二面角的余弦值.【小問1詳解】因?yàn)镈,H分別是PA,PC的中點(diǎn),所以因?yàn)镋,F(xiàn)分別是AB,BC的中點(diǎn),所以,綜上,,又平面PEF,平面PEF,所以平面PEF由題意,G是CF的中點(diǎn),又H是PC的中點(diǎn),所以,又平面PEF,平面PEF,所以平面PEF由,HG,平面DHG,所以平面平面DHG【小問2詳解】在△ABC中,AB=4,AC=2,,所以,所以,又,則因?yàn)椤鱌AB為等邊三角形,點(diǎn)E為AB的中點(diǎn),所以,又平面平面ABC,平面平面ABC=AB,所以平面ABC,面ABC,故綜上,以E為坐標(biāo)原點(diǎn),以EB,EF,EP所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,如圖所示,有,,,,則,,設(shè)平面BPC的法向量為,則,令,則設(shè)平面PCA的法向量為,則,令,則所以.由圖知,二面角的平面角為銳角,所以二面角的余弦值為21、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,利用向量法由求解;(1)建立空間直角坐標(biāo)系,先取得平面的一個(gè)法向量,,,然后由求解【小問1詳解】解:以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系.則,0,,,2,,,2,,,0,,,0,,,0,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 水安ABC考前密訓(xùn)+水利安管考試真題+答案解析
- CCAA - 2021年05月環(huán)境管理體系基礎(chǔ)答案及解析 - 詳解版(80題)
- 2025-2026學(xué)年廣西桂林市高一(上)期末英語試卷(含答案)
- 養(yǎng)老院老人健康監(jiān)測(cè)人員考核獎(jiǎng)懲制度
- 企業(yè)員工培訓(xùn)與素質(zhì)發(fā)展路徑制度
- 空氣源熱泵安裝施工組織設(shè)計(jì)模板
- 寬帶接入裝維員測(cè)試驗(yàn)證能力考核試卷含答案
- 乳品配料工崗前流程優(yōu)化考核試卷含答案
- 電力機(jī)車鉗工崗前操作技能考核試卷含答案
- 富集工誠(chéng)信強(qiáng)化考核試卷含答案
- 2026貴州省黔晟國(guó)有資產(chǎn)經(jīng)營(yíng)有限責(zé)任公司面向社會(huì)招聘中層管理人員2人備考考試試題及答案解析
- 2025年?duì)I養(yǎng)師考試練習(xí)題及答案
- 2026中國(guó)電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會(huì)成熟人才招聘?jìng)淇碱}庫(kù)及答案詳解一套
- 消費(fèi)者權(quán)益保護(hù)與投訴處理手冊(cè)(標(biāo)準(zhǔn)版)
- 南京航空航天大學(xué)飛行器制造工程考試試題及答案
- 陶瓷工藝品彩繪師改進(jìn)水平考核試卷含答案
- 2025廣東百萬英才匯南粵惠州市市直事業(yè)單位招聘急需緊缺人才31人(公共基礎(chǔ)知識(shí))測(cè)試題附答案
- 粉塵防護(hù)知識(shí)課件
- 注塑模具調(diào)試員聘用協(xié)議
- (2025年)糧食和物資儲(chǔ)備局招聘考試題庫(kù)(答案+解析)
- 2026年樂陵市市屬國(guó)有企業(yè)公開招聘工作人員6名備考題庫(kù)及答案詳解一套
評(píng)論
0/150
提交評(píng)論