版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆江西省景德鎮(zhèn)市高二上數學期末考試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線的焦點F的直線l與拋物線交于PQ兩點,若以線段PQ為直徑的圓與直線相切,則()A.8 B.7C.6 D.52.已知實數a,b滿足,則下列不等式中恒成立的是()A. B.C. D.3.若圓與圓相切,則的值為()A. B.C.或 D.或4.圓和圓的位置關系是()A.內含 B.內切C.相交 D.外離5.如圖,在正方體中,E為的中點,則直線與平面所成角的正弦值為()A. B.C. D.6.橢圓=1的一個焦點為F,過原點O作直線(不經過焦點F)與橢圓交于A,B兩點,若△ABF的面積是20,則直線AB的斜率為()A. B.C. D.7.瑞士著名數學家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,這條直線被后人稱為三角形的“歐拉線”.若滿足,頂點,且其“歐拉線”與圓相切,則:①.圓M上的點到原點的最大距離為②.圓M上存在三個點到直線的距離為③.若點在圓M上,則的最小值是④.若圓M與圓有公共點,則上述結論中正確的有()個A.1 B.2C.3 D.48.已知拋物線,,點在拋物線上,記點到直線的距離為,則的最小值是()A.5 B.6C.7 D.89.下列命題正確的是()A.經過三點確定一個平面B.經過一條直線和一個點確定一個平面C.四邊形確定一個平面D.兩兩相交且不共點的三條直線確定一個平面10.已知圓和橢圓.直線與圓交于、兩點,與橢圓交于、兩點.若時,的取值范圍是,則橢圓的離心率為()A. B.C. D.11.已知A,B,C三點不共線,O是平面ABC外一點,下列條件中能確定點M與點A,B,C一定共面的是A. B.C. D.12.已知函數對于任意的滿足,其中是函數的導函數,則下列各式正確的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在三棱錐P–ABC的平面展開圖中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,則cos∠FCB=______________.14.已知雙曲線的左焦點為F,點P在雙曲線右支上,若線段PF的中點在以原點O為圓心,為半徑的圓上,且直線PF的斜率為,則該雙曲線的離心率是______15.函數的單調遞減區(qū)間是___________.16.數學家歐拉年在其所著的《三角形幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線,已知的頂點、,其歐拉線的方程為,則的外接圓方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知集合,.若,且“”是“”的充分不必要條件,求實數a的取值范圍18.(12分)已知等比數列{}的各項均為正數,,,成等差數列,,數列{}的前n項和,且.(1)求{}和{}的通項公式;(2)設,記數列{}的前n項和為.求證:.19.(12分)設:實數滿足,:實數滿足(1)當時,若與均為真命題,求實數的取值范圍;(2)當時,若是的必要條件,求實數的取值范圍20.(12分)已知等差數列滿足,(1)求數列的通項公式及前10項和;(2)等比數列滿足,,求和:21.(12分)已知動點M到定點和的距離之和為4(1)求動點軌跡的方程;(2)若直線交橢圓于兩個不同的點A,B,O是坐標原點,求的面積22.(10分)已知橢圓的左、右焦點分別為,,點在橢圓C上,且滿足(1)求橢圓C的標準方程;(2)設直線與橢圓C交于不同的兩點M,N,且(O為坐標原點).證明:總存在一個確定的圓與直線l相切,并求該圓的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】依據拋物線定義可以證明:以過拋物線焦點F的弦PQ為直徑的圓與其準線相切,則可以順利求得線段的長.【詳解】拋物線的焦點F,準線取PQ中點H,分別過P、Q、H作拋物線準線的垂線,垂足分別為N、M、E則四邊形為直角梯形,為梯形中位線,由拋物線定義可知,,,則故,即點H到拋物線準線的距離為的一半,則以線段PQ為直徑的圓與拋物線的準線相切.又以線段PQ為直徑的圓與直線相切,則以線段PQ為直徑的圓的直徑等于直線與直線間的距離.即故選:C2、D【解析】利用特殊值排除錯誤選項,利用函數單調性證明正確選項.【詳解】時,,但,所以A選項錯誤.時,,但,所以B選項錯誤.時,,但,所以C選項錯誤.在上遞增,所以,即D選項正確.故選:D3、C【解析】分類討論:當兩圓外切時,圓心距等于半徑之和;當兩圓內切時,圓心距等于半徑之差,即可求解.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為.①當兩圓外切時,有,此時.②當兩圓內切時,有,此時.綜上,當時兩圓外切;當時兩圓內切.故選:C【點睛】本題考查了圓與圓的位置關系,解答兩圓相切問題時易忽略兩圓相切包括內切和外切兩種情況.解答時注意分類討論,屬于基礎題.4、C【解析】根據兩圓圓心的距離與兩圓半徑和差的大小關系即可判斷.【詳解】解:因為圓的圓心為,半徑為,圓的圓心為,半徑為,所以兩圓圓心的距離為,因為,即,所以圓和圓的位置關系是相交,故選:C.5、D【解析】構建空間直角坐標系,求直線的方向向量、平面的法向量,應用空間向量的坐標表示,求直線與平面所成角的正弦值.【詳解】以點D為坐標原點,向量分別為x,y,z軸建立空間直角坐標系,則,,,,可得,,,設面的法向量為,有,取,則,所以,,,則直線與平面所成角的正弦值為故選:D.6、A【解析】分情況討論當直線AB的斜率不存在時,可求面積,檢驗是否滿足條件,當直線AB的斜率存在時,可設直線AB的方程y=kx,聯立橢圓方程,可求△ABF2的面積為S=2代入可求k【詳解】由橢圓=1,則焦點分別為F1(-5,0),F2(5,0),不妨取F(5,0)①當直線AB的斜率不存在時,直線AB的方程為x=0,此時AB=4,=AB?5=×5=10,不符合題意;②可設直線AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面積為S=2=2××5×=20,∴k=±故選:A7、A【解析】由題意求出的垂直平分線可得△的歐拉線,再由圓心到直線的距離求得,得到圓的方程,求出圓心到原點的距離,加上半徑判斷A;求出圓心到直線的距離判斷B;再由的幾何意義,即圓上的點與定點連線的斜率判斷C;由兩個圓有公共點可得圓心距與兩個半徑之間的關系,求得的取值范圍判斷D【詳解】由題意,△的歐拉線即的垂直平分線,,,的中點坐標為,,則的垂直平分線方程為,即由“歐拉線”與圓相切,到直線的距離,,則圓的方程為:,圓心到原點的距離為,則圓上的點到原點的最大距離為,故①錯誤;圓心到直線的距離為,圓上存在三個點到直線的距離為,故②正確;的幾何意義:圓上的點與定點連線的斜率,設過與圓相切的直線方程為,即,由,解得,的最小值是,故③錯誤;的圓心坐標,半徑為,圓的的圓心坐標為,半徑為,要使圓與圓有公共點,則圓心距的范圍為,,,解得,故④錯誤故選:A8、D【解析】先求出拋物線的焦點和準線,利用拋物線的定義將轉化為的距離,即可求解.【詳解】由已知得拋物線的焦點為,準線方程為,設點到準線的距離為,則,則由拋物線的定義可知∵,當點、、三點共線時等號成立,∴,故選:.9、D【解析】由平面的基本性質結合公理即可判斷.【詳解】對于A,過不在一條直線上三點才能確定一個平面,故A不正確;對于B,經過一條直線和直線外一個點確定一個平面,故B不正確;對于C,空間四邊形不能確定一個平面,故C不正確;對于D,兩兩相交且不共點的三條直線確定一個平面,故D正確.故選:D10、C【解析】由題設,根據圓與橢圓的對稱性,假設在第一象限可得,結合已知有,進而求橢圓的離心率.【詳解】由題設,圓與橢圓的如下圖示:又時,的取值范圍是,結合圓與橢圓的對稱性,不妨假設在第一象限,∴從0逐漸增大至無窮大時,,故,∴故選:C.11、D【解析】首先利用坐標法,排除錯誤選項,然后對符合的選項驗證存在使得,由此得出正確選項.【詳解】不妨設.對于A選項,,由于的豎坐標,故不在平面上,故A選項錯誤.對于B選項,,由于的豎坐標,故不在平面上,故B選項錯誤.對于C選項,,由于的豎坐標,故不在平面上,故C選項錯誤.對于D選項,,由于的豎坐標為,故在平面上,也即四點共面.下面證明結論一定成立:由,得,即,故存在,使得成立,也即四點共面.故選:D.【點睛】本小題主要考查空間四點共面的證明方法,考查空間向量的線性運算,考查數形結合的數學思想方法,考查化歸與轉化的數學思想方法,屬于中檔題.12、C【解析】令,結合題意可得,利用導數討論函數的單調性,進而得出,變形即可得出結果.【詳解】令,則,又,所以,令,令,所以函數在上單調遞減,在單調遞增,所以,即,則.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理計算出、,可得出,然后在中利用余弦定理可求得的值.【詳解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案為:.【點睛】本題考查利用余弦定理解三角形,考查計算能力,屬于中等題.14、3【解析】如圖利用條件可得,,然后利用雙曲線的定義可得,即求.【詳解】如圖設雙曲線的右焦點為,線段PF的中點為M,連接,則,又直線PF的斜率為,∴在直角三角形中,,∴,∴,即,∴.故答案:3.15、【解析】首先對求導,可得,令,解可得答案【詳解】解:由得,故的單調遞減區(qū)間是故答案為:【點睛】本題考查利用導數研究函數的單調性,屬于基礎題.16、【解析】求出線段的垂直平分線方程,與歐拉線方程聯立,求出的外接圓圓心坐標,并求出外接圓的半徑,由此可得出的外接圓方程.【詳解】直線的斜率為,線段的中點為,所以,線段的垂直平分線的斜率為,則線段垂直平分線方程為,即,聯立,解得,即的外心為,所以,的外接圓的半徑為,因此,的外接圓方程為.故答案為:.【點睛】方法點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關圓的一些常用性質和定理如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線;(2)待定系數法:根據條件設出圓的方程,再由題目給出的條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數,所以應該有三個獨立等式三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】由題設A是的真子集,結合已知集合的描述列不等式求a的范圍.【詳解】由“”是“”的充分不必要條件,即A是的真子集,又,,所以,可得,則實數a的取值范圍為18、(1)(2)證明見解析【解析】設等比數列的公比為,由,,成等差數列,解得.由,利用通項公式解得,可得.由數列的前項和,且,時,,化簡整理即可得出;(2),利用裂項求和方法、數列的單調性即可證明結論【小問1詳解】設等比數列的公比為,,,成等差數列,,即,化為:,解得,,即,解得,數列的前項和,且,時,,化為:,,數列是每項都為1的常數列,,化為【小問2詳解】證明:,數列的前項和為,19、(1);(2).【解析】(1)將代入,解一元二次不等式求兩集合的交集即可求解.(2)求出:,根據題意可得轉化為集合的包含關系即可求解.【詳解】(1)當時,:,:或.因為,中都是真命題.所以所以實數的取值范圍是;(2)當時,:,:或,所以:,因為是的必要條件,所以,所以,解得,所以實數的取值范圍是.20、(1),175(2)【解析】(1)由已知結合等差數列的通項公式先求出公差,然后結合通項公式及求和公式即可求解;(2)結合等比數列的性質先求出,然后結合等比數列性質及求和公式可求【小問1詳解】解:等差數列滿足,,所以,,;【小問2詳解】解:因為等比數列滿足,,所以或(舍去),由等比數列的性質可知,是以1為首項,4為公比的等比數列,所以,所以21、(1);(2).【解析】(1)利用橢圓的定義即求;(2)由直線方程與橢圓方程聯立,可解得點,再利用三角形面積公式即求.【小問1詳解】∵動點M到定點和的距離之和為4,∴動點M的軌跡是以和為焦點的橢圓,可設方程為,則,故動點軌跡的方程為;【小問2詳解】由可得,∴或,∴,又O是坐標原點,∴的面積為.22、(1);(2)理由見解析,圓的方程為.【解析】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46850-2025燃氣鍋爐爐膛及燃燒設備設計選型導則
- 養(yǎng)老院服務質量監(jiān)督評價制度
- 企業(yè)品牌保護與維權制度
- 智能電力裝備制造環(huán)評報告
- 老年綜合征患者依從性提升策略
- 老年終末期跌倒預防的康復護理方案優(yōu)化
- 老年終末期營養(yǎng)不良篩查工具的實習帶教策略
- 需求端補短板驅動力再優(yōu)化:2026年中觀環(huán)境展望-
- 2025年內江市隆昌市檔案館招聘考試真題
- 機械加工材料切割工安全檢查模擬考核試卷含答案
- 洗浴員工協議書
- 園區(qū)托管運營協議書
- 清欠歷史舊賬協議書
- 臨床創(chuàng)新驅動下高效型護理查房模式-Rounds護士查房模式及總結展望
- 乙肝疫苗接種培訓
- GB/T 45133-2025氣體分析混合氣體組成的測定基于單點和兩點校準的比較法
- 食品代加工業(yè)務合同樣本(版)
- 北京市行業(yè)用水定額匯編(2024年版)
- 安全生產應急平臺體系及專業(yè)應急救援隊伍建設項目可行性研究報告
- 中國傳統(tǒng)美食餃子歷史起源民俗象征意義介紹課件
- 醫(yī)療器械樣品檢驗管理制度
評論
0/150
提交評論