版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市寶山區(qū)通河中學(xué)2026屆數(shù)學(xué)高一上期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知正三棱錐P—ABC(頂點在底面的射影是底面正三角形的中心)的側(cè)面是頂角為30°腰長為2的等腰三角形,若過A的截面與棱PB,PC分別交于點D和點E,則截面△ADE周長的最小值是()A. B.2C. D.22.下列函數(shù)中,既是偶函數(shù),在上是增函數(shù)的是()A. B.C. D.3.已知函數(shù)關(guān)于直線對稱,且當時,恒成立,則滿足的x的取值范圍是()A. B.C. D.4.函數(shù)的圖象的橫坐標和縱坐標同時擴大為原來的3倍,再將圖象向右平移3個單位長度,所得圖象的函數(shù)解析式為A. B.C. D.5.當x越來越大時,下列函數(shù)中增長速度最快的是()A. B.C. D.6.已知命題p:x為自然數(shù),命題q:x為整數(shù),則p是q的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.函數(shù)的零點所在的區(qū)間為A. B.C. D.8.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象為1,則b的象為A.1,2中的一個 B.1,2C.2 D.無法確定9.已知函數(shù)fx=2A.-2 B.-1C.-1210.函數(shù)的一個零點在區(qū)間內(nèi),則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則的值為___________.12.使三角式成立的的取值范圍為_________13.若存在常數(shù)和,使得函數(shù)和對其公共定義域上的任意實數(shù)都滿足:和恒成立,則稱此直線為和的“隔離直線”.已知函數(shù),,若函數(shù)和之間存在隔離直線,則實數(shù)的取值范圍是______14.如圖是函數(shù)在一個周期內(nèi)的圖象,則其解析式是________15.已知兩點,,以線段為直徑的圓經(jīng)過原點,則該圓的標準方程為____________.16.已知一個扇形的面積為,半徑為,則其圓心角為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)為偶函數(shù)(1)求實數(shù)的值;(2)記集合,,判斷與的關(guān)系;(3)當時,若函數(shù)值域為,求的值.18.設(shè)全集,集合,(1)當時,求;(2)若,求實數(shù)的取值范圍19.已知函數(shù)(1)若是偶函數(shù),求a的值;20.已知的圖像關(guān)于坐標原點對稱.(1)求的值,并求出函數(shù)的零點;(2)若存在,使不等式成立,求實數(shù)取值范圍.21.降噪耳機主要有主動降噪耳機和被動降噪耳機兩種.其中主動降噪耳機的工作原理是:先通過微型麥克風(fēng)采集周圍的噪聲,然后降噪芯片生成與噪聲振幅相同、相位相反的反向聲波來抵消噪聲(如圖所示).已知某噪聲的聲波曲線是,其中的振幅為2,且經(jīng)過點.(1)求該噪聲聲波曲線的解析式以及降噪芯片生成的降噪聲波曲線的解析式;(2)將函數(shù)圖象上各點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變得到函數(shù)的圖象.若銳角滿足,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】可以將三棱錐側(cè)面展開,將計算周長最小值轉(zhuǎn)化成計算兩點間距離最小值,解三角形,即可得出答案.【詳解】將三棱錐的側(cè)面展開,如圖則將求截面周長的最小值,轉(zhuǎn)化成計算的最短距離,結(jié)合題意可知=,,所以,故周長最小值為,故選D.【點睛】本道題目考查了解三角形的知識,可以將空間計算周長最小值轉(zhuǎn)化層平面計算兩點間的最小值,即可.2、C【解析】根據(jù)函數(shù)奇偶性的定義及冪函數(shù)、對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),對各選項逐一分析即可求解.【詳解】解:對A:,定義域為R,因為,所以函數(shù)為偶函數(shù),而根據(jù)冪函數(shù)的性質(zhì)有在上單調(diào)遞增,所以在上單調(diào)遞減,故選項A錯誤;對B:,定義域為,因為,所以函數(shù)為奇函數(shù),故選項B錯誤;對C:定義域為,因為,所以函數(shù)為偶函數(shù),又時,根據(jù)對數(shù)函數(shù)的性質(zhì)有在上單調(diào)遞減,所以在上單調(diào)遞增,故選項C正確;對D:,定義域為R,因為,所以函數(shù)為奇函數(shù),故選項D錯誤.故選:C.3、B【解析】根據(jù)題意,得到函數(shù)為偶函數(shù),且在為單調(diào)遞減函數(shù),則在為單調(diào)遞增函數(shù),把不等式,轉(zhuǎn)化為,即可求解.【詳解】由題意,函數(shù)關(guān)于直線對稱,所以函數(shù)為偶函數(shù),又由當時,恒成立,可得函數(shù)在為單調(diào)遞減函數(shù),則在為單調(diào)遞增函數(shù),因為,可得,即或,解得或,即不等式的解集為,即滿足的x的取值范圍是.故選:B.4、D【解析】函數(shù)的圖像的橫坐標和縱坐標同時擴大為原來的3倍,所得圖像的解析式為,再向右平移3個單位長度,所得圖像的解析式為,選D.5、B【解析】根據(jù)函數(shù)的特點即可判斷出增長速度.【詳解】因為指數(shù)函數(shù)是幾何級數(shù)增長,當x越來越大時,增長速度最快.故選:B6、A【解析】根據(jù)兩個命題中的取值范圍,分析是否能得到pq和qp【詳解】若x為自然數(shù),則它必為整數(shù),即p?q但x為整數(shù)不一定是自然數(shù),如x=-2,即qp故p是q的充分不必要條件故選:A.7、B【解析】函數(shù)的零點所在區(qū)間需滿足的條件是函數(shù)在區(qū)間端點的函數(shù)值符號相反,函數(shù)是連續(xù)函數(shù)【詳解】解:函數(shù)是連續(xù)增函數(shù),,,即,函數(shù)的零點所在區(qū)間是,故選:【點睛】本題考查函數(shù)的零點的判定定理,連續(xù)函數(shù)在某個區(qū)間存在零點的條件是函數(shù)在區(qū)間端點處的函數(shù)值異號,屬于基礎(chǔ)題8、A【解析】根據(jù)映射中象與原象定義,元素與元素的對應(yīng)關(guān)系即可判斷【詳解】映射f:A→B,其中A={a,b},B={1,2}已知a的象為1,根據(jù)映射的定義,對于集合A中的任意一個元素在集合B中都有唯一的元素和它對應(yīng),可得b=1或2,所以選A【點睛】本題考查了集合中象與原象的定義,關(guān)于對應(yīng)關(guān)系的理解.注意A集合中的任意元素在集合B中必須有對應(yīng),屬于基礎(chǔ)題9、A【解析】直接代入-1計算即可.【詳解】f故選:A.10、C【解析】根據(jù)零點存在定理得出,代入可得選項.【詳解】由題可知:函數(shù)單調(diào)遞增,若一個零點在區(qū)間內(nèi),則需:,即,解得,故選:C.【點睛】本題考查零點存在定理,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用和角正弦公式、差角余弦公式及同角商數(shù)關(guān)系,將目標式化為即可求值.【詳解】.故答案為:.12、【解析】根據(jù)同角三角函數(shù)間的基本關(guān)系,化為正余弦函數(shù),即可求出.【詳解】因為,,所以,所以,所以終邊在第三象限,.【點睛】本題主要考查了同角三角函數(shù)間的基本關(guān)系,三角函數(shù)在各象限的符號,屬于中檔題.13、【解析】由已知可得、恒成立,可求得實數(shù)的取值范圍.【詳解】因為函數(shù)和之間存在隔離直線,所以,當時,可得對任意的恒成立,則,即,當時,可得對恒成立,令,則有對恒成立,所以或,解得或,綜上所述,實數(shù)的取值范圍是.故答案為:.14、【解析】由圖可得;,則;由五點作圖法可得,解得,所以其解析式為考點:1.三角函數(shù)的圖像;2.五點作圖法;15、【解析】由以線段為直徑的圓經(jīng)過原點,則可得,求得參數(shù)的值,然后由中點坐標公式求所求圓的圓心,用兩點距離公式求所求圓的直徑,再運算即可.【詳解】解:由題意有,,又以線段為直徑的圓經(jīng)過原點,則,則,解得,即,則的中點坐標為,即為,又,即該圓的標準方程為,故答案為.【點睛】本題考查了圓的性質(zhì)及以兩定點為直徑的圓的方程的求法,重點考查了運算能力,屬基礎(chǔ)題.16、【解析】結(jié)合扇形的面積公式即可求出圓心角的大小.【詳解】解:設(shè)圓心角為,半徑為,則,由題意知,,解得,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】(1)由恒成立,可得恒成立,進而得實數(shù)的值;(2)化簡集合,得;(3)先判定的單調(diào)性,再求出時的范圍,與等價即可求出實數(shù)的值.試題解析:(1)為偶函數(shù),.(2)由(1)可知:,當時,;當時,.,.(3).上單調(diào)遞增,,為的兩個根,又由題意可知:,且.考點:1、函數(shù)的奇偶性及值域;2、對數(shù)的運算.18、(1)或;(2)【解析】(1)由得到,然后利用集合的補集和交集運算求解.(2)化簡集合,根據(jù),分和兩種情況求解.【詳解】(1)當時,或,或.(2),若,則當時,,不成立,解得,的取值范圍是.19、(1)0(2)【解析】(1)由偶函數(shù)的定義得出a的值;(2)由分離參數(shù)得,利用換元法得出的最小值,即可得出a的取值范圍【小問1詳解】因為是偶函數(shù),所以,即,故【小問2詳解】由題意知在上恒成立,則,又因為,所以,則.令,則,可得,又因為,當且僅當時,等號成立,所以,即a的取值范圍是20、(1),(2)【解析】(1)由題設(shè)知是上的奇函數(shù).所以,得(檢驗符合),又方程可以化簡為,從而.(2)不等式有解等價于在上有解,所以考慮在上的最小值,利用換元法可求該最小值為,故.(1)由題意知是上的奇函數(shù).所以,得.,,由,可得,所以,,即的零點為.(2),由題設(shè)知在內(nèi)能成立,即不等式在上能成立.即在內(nèi)能成立,令,則在上能成立,只需,令,對稱軸,則在上單調(diào)遞增.∴,所以..點睛:如果上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 胸心外科規(guī)培結(jié)業(yè)考試題庫及答案
- 上饒市廣豐區(qū)輔警公共基礎(chǔ)知識題庫(附答案)
- 《國際金融學(xué)》習(xí)題與答案
- 2025年全國青少年禁毒知識競賽題庫與答案(中學(xué)組)
- 公共安全監(jiān)管人員安全知識測試題庫及答案
- 營銷調(diào)研考試題及答案
- LG(中國)招聘面試題及答案
- 大學(xué)語文考研試題及答案
- 中建東孚2026屆校園招聘考試備考題庫附答案
- 關(guān)于南昌市灣里管理局2025年度公開選調(diào)事業(yè)單位工作人員的【24人】考試備考題庫附答案
- 傳染病學(xué)-病毒性肝炎
- 電氣試驗報告模板
- 重慶市沙坪壩小學(xué)小學(xué)語文五年級上冊期末試卷
- 陶瓷巖板應(yīng)用技術(shù)規(guī)程
- 中藥制劑技術(shù)中職PPT完整全套教學(xué)課件
- 龍虎山正一日誦早晚課
- WORD版A4橫版密封條打印模板(可編輯)
- 1比較思想政治教育
- 藝術(shù)課程標準(2022年版)
- JJF 1654-2017平板電泳儀校準規(guī)范
- 上海市工業(yè)用水技術(shù)中心-工業(yè)用水及廢水處理課件
評論
0/150
提交評論