鄭州市2026屆數(shù)學高二上期末經(jīng)典試題含解析_第1頁
鄭州市2026屆數(shù)學高二上期末經(jīng)典試題含解析_第2頁
鄭州市2026屆數(shù)學高二上期末經(jīng)典試題含解析_第3頁
鄭州市2026屆數(shù)學高二上期末經(jīng)典試題含解析_第4頁
鄭州市2026屆數(shù)學高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

鄭州市2026屆數(shù)學高二上期末經(jīng)典試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則()A. B.C. D.2.已知四面體,所有棱長均為2,點E,F(xiàn)分別為棱AB,CD的中點,則()A.1 B.2C.-1 D.-23.若圓與圓外切,則()A. B.C. D.4.如圖,正方形與矩形所在的平面互相垂直,在上,且平面,則M點的坐標為()A. B.C. D.5.過點且與拋物線只有一個公共點的直線有()A.1條 B.2條C.3條 D.0條6.已知數(shù)列的前項和為,當時,()A.11 B.20C.33 D.357.已知向量與平行,則()A. B.C. D.8.已知公比不為1的等比數(shù)列,其前n項和為,,則()A.2 B.4C.5 D.259.下列導數(shù)運算正確的是()A. B.C. D.10.已知數(shù)列是等比數(shù)列,且,則的值為()A.3 B.6C.9 D.3611.從甲地到乙地要經(jīng)過3個十字路口,設(shè)各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為,,,一輛車從甲地到乙地,恰好遇到2個紅燈的概率為()A. B.C. D.12.已知直線過點,且與直線垂直,則直線的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.分別過橢圓的左、右焦點、作兩條互相垂直的直線、,它們的交點在橢圓的內(nèi)部,則橢圓的離心率的取值范圍是________14.在正方體中,二面角的大小為__________(用反三角表示)15.橢圓的左、右焦點分別為,,過焦點的直線交該橢圓于兩點,若的內(nèi)切圓面積為,兩點的坐標分別為,,則的面積________,的值為________.16.已知p:≤0,q:4x+2x-m≤0,若p是q的充分條件,則實數(shù)m的取值范圍是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的二項展開式中所有項的二項式系數(shù)之和為,(1)求的值;(2)求展開式的所有有理項(指數(shù)為整數(shù)),并指明是第幾項18.(12分)已知.(1)當,時,求中含項的系數(shù);(2)用、表示,寫出推理過程19.(12分)已知幾何體中,平面平面,是邊長為4的菱形,,是直角梯形,,,且(1)求證:;(2)求平面與平面所成角的余弦值20.(12分)已知點P到點的距離比它到直線的距離小1.(1)求點P的軌跡方程;(2)點M,N在點P的軌跡上且位于x軸的兩側(cè),(其中O為坐標原點),求面積的最小值.21.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)試討論函數(shù)的單調(diào)性.22.(10分)已知,兩地的距離是.根據(jù)交通法規(guī),,兩地之間的公路車速(單位:)應(yīng)滿足.假設(shè)油價是7元/,以的速度行駛時,汽車的耗油率為,當車速為時,汽車每小時耗油,司機每小時的工資是91元.(1)求的值;(2)如果不考慮其他費用,當車速是多少時,這次行車的總費用最低?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設(shè),計算出、的值,利用平方差公式可求得結(jié)果.【詳解】設(shè)由已知可得,,因此,.故選:D.2、D【解析】在四面體中,取定一組基底向量,表示出,,再借助空間向量數(shù)量積計算作答.【詳解】四面體所有棱長均為2,則向量不共面,兩兩夾角都為,則,因點E,F(xiàn)分別為棱AB,CD的中點,則,,,所以.故選:D3、C【解析】求得兩圓的圓心坐標和半徑,結(jié)合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因為兩圓相外切,可得,解得故選:C.4、A【解析】設(shè)點的坐標為,由平面,可得出,利用空間向量數(shù)量積為0求得、的值,即可得出點的坐標.【詳解】設(shè)點的坐標為,,,,,則,,,平面,即,所以,,解得,所以,點的坐標為,故選:A.5、B【解析】過的直線的斜率存在和不存在兩種情況分別討論即可得出答案.【詳解】易知過點,且斜率不存在的直線為,滿足與拋物線只有一個公共點.當直線的斜率存在時,設(shè)直線方程為,與聯(lián)立得,當時,方程有一個解,即直線與擾物線只有一個公共點.故滿足題意的直線有2條.故選:B6、B【解析】由數(shù)列的性質(zhì)可得,計算可得到答案.【詳解】由題意,.故答案為B.【點睛】本題考查了數(shù)列的前n項和的性質(zhì),屬于基礎(chǔ)題.7、D【解析】根據(jù)兩向量平行可求得、的值,即可得出合適的選項.【詳解】由已知,解得,,則.故選:D.8、B【解析】設(shè)等比數(shù)列的公比為,根據(jù)求得,從而可得出答案.【詳解】解:設(shè)等比數(shù)列的公比為,則,所以,則.故選:B.9、B【解析】利用基本初等函數(shù)的導數(shù)和復(fù)合函數(shù)的導數(shù),依次分析即得解【詳解】選項A,,錯誤;選項B,,正確;選項C,,錯誤;選項D,,錯誤故選:B10、C【解析】應(yīng)用等比中項的性質(zhì)有,結(jié)合已知求值即可.【詳解】由等比數(shù)列的性質(zhì)知:,,,所以,又,所以.故選:C11、B【解析】利用相互獨立事件概率乘法公式和互斥事件概率加法公式直接求解【詳解】由各路口信號燈工作相互獨立,可得某人從甲地到乙地恰好遇到2次紅燈的概率:故選:B12、D【解析】由題意設(shè)直線方程為,然后將點坐標代入求出,從而可求出直線方程【詳解】因為直線與直線垂直,所以設(shè)直線方程為,因為直線過點,所以,得,所以直線方程為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)條件可知以為直徑的圓在橢圓的內(nèi)部,可得,再根據(jù),即可求得離心率的取值范圍.【詳解】根據(jù)條件可知,以為直徑的圓與橢圓沒有交點,即,即,,即.故填:.【點睛】本題考查橢圓離心率的取值范圍,求橢圓離心率是??碱}型,涉及的方法包含1.根據(jù)直接求,2.根據(jù)條件建立關(guān)于的齊次方程求解,3.根據(jù)幾何關(guān)系找到的等量關(guān)系求解.14、【解析】作出二面角的平面角,并計算出二面角的大小.【詳解】設(shè),畫出圖像如下圖所示,由于,所以平面,所以,所以是二面角的平面角.所以.所以二面角的大小為.故答案為:15、①.6②.3【解析】由題意得,由內(nèi)切圓面積為可得其半徑,根據(jù)焦點三角形面積公式可得第一空答案,結(jié)合面積公式和等面積法建立等式化簡即可.【詳解】解:由得由內(nèi)切圓面積為可得其半徑,設(shè)其內(nèi)切圓圓心為則又所以.故答案為:6;3【點睛】橢圓中常用面積公式:(1)(表示邊上的高);(2);(3)(為三角形內(nèi)切圓半徑);(4).16、m≥6【解析】分別求出p,q成立的等價條件,利用p是q的充分條件,轉(zhuǎn)為當0<x≤1時,m大于等于的最大值,求出最值即可確定m的取值范圍【詳解】由,得0<x≤1,即p:0<x≤1由4x+2x﹣m≤0得4x+2x≤m因為,要使p是q的充分條件,則當0<x≤1時,m大于等于的最大值,令,則在上單調(diào)遞增,故當時取到最大值6,所以m≥6故答案為:m≥6【點睛】本題主要考查充分條件和必要條件的應(yīng)用,考查函數(shù)的最值,考查轉(zhuǎn)化的思想,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由二項式系數(shù)和公式可得答案;(2)求出的通項,利用的指數(shù)為整數(shù)可得答案.【小問1詳解】的二項展開式中所有項的二項式系數(shù)之和,所以.【小問2詳解】,因此時,有理項,有理項是第一項和第七項.18、(1)(2),過程見解析【解析】(1)寫出函數(shù)的解析式,利用二項式定理可求得函數(shù)中含項的系數(shù);(2)利用錯位相減法化簡函數(shù)的解析式,求出解析式中含項的系數(shù),再結(jié)合組合數(shù)公式化簡可得結(jié)果.【小問1詳解】解:當,時,,的展開式通項為,此時,函數(shù)中含項的系數(shù)之和為.【小問2詳解】解:因為,①則,②①②得,所以,,而為中含項的系數(shù),而函數(shù)中含項的系數(shù)也可視為中含項的系數(shù),故,且,故.19、(1)證明見解析;(2).【解析】(1)根據(jù)菱形的性質(zhì),結(jié)合面面垂直的性質(zhì)定理、線面垂直的判定定理和性質(zhì)進行證明即可;(2)建立空間直角坐標系,根據(jù)空間向量夾角公式進行求解即可.【詳解】(1)證明:連接,交于點,∵四邊形是菱形,∴,∵平面平面,平面平面,,∴平面,∵平面,∴,又,、平面,∴平面,∵平面,∴(2)解:取的中點,連接,∵是邊長為4的菱形,,∴,,以為原點,,,所在直線分別為,,軸建立如圖所示的空間直角坐標系,則,,,,∴,,設(shè)平面的法向量為,則,即,令,則,,∴,同理可得,平面的一個法向量為,∴,由圖知,平面與平面所成角為銳角,故平面與平面所成角余弦值為20、(1);(2).【解析】(1)根據(jù)給定條件可得點P到點的距離等于它到直線的距離,再由拋物線定義即可得解.(2)由(1)設(shè)出點M,N的坐標,再結(jié)合給定條件及三角形面積定理列式,借助均值不等式計算作答.【小問1詳解】因點P到點的距離比它到直線的距離小1,顯然點P與F在直線l同側(cè),于是得點P到點的距離等于它到直線的距離,則點P的軌跡是以F為焦點,直線為準線的拋物線,所以點P的軌跡方程是.【小問2詳解】由(1)設(shè)點,,且,因,則,解得,S,當且僅當,即時取“=”,所以面積的最小值為.【點睛】思路點睛:圓錐曲線中的幾何圖形面積范圍或最值問題,可以以直線的斜率、橫(縱)截距、圖形上動點的橫(縱)坐標為變量,建立函數(shù)關(guān)系求解作答.21、(1)(2)詳見解析.【解析】(1)由,求導,得到,寫出切線方程;(2)求導,再分,,討論求解.【小問1詳解】解:因為,所以,則,所以,所以曲線在點處的切線方程是,即;【小問2詳解】因為,所以,當時,成立,則在上遞減;當時,令,得,當時,,當時,,所以在上遞減,在上遞增;綜上:當時,在上遞減

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論