北京市交通大學附屬中學2026屆高二數(shù)學第一學期期末考試試題含解析_第1頁
北京市交通大學附屬中學2026屆高二數(shù)學第一學期期末考試試題含解析_第2頁
北京市交通大學附屬中學2026屆高二數(shù)學第一學期期末考試試題含解析_第3頁
北京市交通大學附屬中學2026屆高二數(shù)學第一學期期末考試試題含解析_第4頁
北京市交通大學附屬中學2026屆高二數(shù)學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市交通大學附屬中學2026屆高二數(shù)學第一學期期末考試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知兩直線與,則與間的距離為()A. B.C. D.2.已知a,b是互不重合直線,,是互不重合的平面,下列命題正確的是()A.若,,則B.若,,,則C.若,,則D.若,,,則3.函數(shù)在上是單調遞增函數(shù),則的最大值等于()A.2 B.3C.5 D.64.如圖,在空間四邊形OABC中,,,,點N為BC的中點,點M在線段OA上,且OM=2MA,則()A. B.C. D.5.劉老師在課堂中與學生探究某個圓時,有四位同學分別給出了一個結論.甲:該圓經過點.乙:該圓半徑為.丙:該圓的圓心為.丁:該圓經過點,如果只有一位同學的結論是錯誤的,那么這位同學是()A.甲 B.乙C.丙 D.丁6.已知雙曲線的漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.47.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B.C. D.8.已知五個數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,則該樣本標準差為()A.1 B.C. D.29.已知球O的半徑為2,球心到平面的距離為1,則球O被平面截得的截面面積為()A. B.C. D.10.設橢圓()的左焦點為F,O為坐標原點.過點F且斜率為的直線與C的一個交點為Q(點Q在x軸上方),且,則C的離心率為()A. B.C. D.11.已知雙曲線的離心率為2,且與橢圓有相同的焦點,則該雙曲線的漸近線方程為()A. B.C. D.12.太極圖被稱為“中華第一圖”,閃爍著中華文明進程的光輝,它是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉化,相對統(tǒng)一的和諧美.定義:能夠將圓O的周長和面積同時等分成兩個部分的函數(shù)稱為圓O的一個“太極函數(shù)”,設圓O:,則下列說法中正確的是()①函數(shù)是圓O的一個太極函數(shù)②圓O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)③函數(shù)是圓O的一個太極函數(shù)④函數(shù)的圖象關于原點對稱是為圓O的太極函數(shù)的充要條件A.①② B.①③C.②③ D.③④二、填空題:本題共4小題,每小題5分,共20分。13.已知過點作拋物線的兩條切線,切點分別為A、B,直線經過拋物線C的焦點F,則___________14.甲、乙兩名學生通過某次聽力測試的概率分別為和,且是否通過聽力測試相互獨立,兩人同時參加測試,其中有且只有一人能通過的概率是__________15.命題“若,則”的否命題為______16.設,則動點P的軌跡方程為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知公差不為的等差數(shù)列的首項,且、、成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設,,是數(shù)列的前項和,求使成立的最大的正整數(shù).18.(12分)設函數(shù).(1)當k=1時,求函數(shù)的單調區(qū)間;(2)當時,求函數(shù)在上的最小值m和最大值M.19.(12分)已知數(shù)列的前項和為,且(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和20.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)求函數(shù)在區(qū)間上的最大值與最小值.21.(12分)已知;對任意的恒成立.(1)若是真命題,求m的取值范圍;(2)若是假命題,是真命題,求m的取值范圍.22.(10分)已知;.(1)若為真命題,求實數(shù)的取值范圍;(2)若為假命題,為真命題,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】把直線的方程化簡,再利用平行線間距離公式直接計算得解.【詳解】直線的方程化為:,顯然,,所以與間的距離為.故選:B2、B【解析】根據(jù)線線,線面,面面位置關系的判定方法即可逐項判斷.【詳解】A:若,,則或a,故A錯誤;B:若,,則a⊥β,又,則a⊥b,故B正確;C:若,,則或α與β相交,故C錯誤;D:若,,,則不能判斷α與β是否垂直,故D錯誤.故選:B.3、B【解析】由f(x)=x3﹣ax在[1,+∞)上是單調增函數(shù),得到在[1,+∞)上,恒成立,從而解得a≤3,故a的最大值為3【詳解】解:∵f(x)=x3﹣ax在[1,+∞)上是單調增函數(shù)∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)時,3x2≥3恒成立,∴a≤3,∴a的最大值是3故選:B4、D【解析】利用空間向量的線性運算即可求解.【詳解】解:∵N為BC的中點,點M在線段OA上,且OM=2MA,且,,,故選:D.5、D【解析】分別假設甲、乙、丙、丁是錯誤的,看能否推出矛盾,進而推導出答案.【詳解】假設甲的結論錯誤,根據(jù)丙和丁的結論,該圓的半徑為6,與乙的結論矛盾;假設乙的結論錯誤,圓心到點的距離與圓心到點的距離不相等,不成立;假設丙的結論錯誤﹐點到點的距離大于,不成立;假設丁的結論錯誤,圓心到點的距離等于,成立.故選:D6、A【解析】由雙曲線的漸近線方程,可得,再由的關系和離心率公式,計算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.7、C【解析】首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎題.8、B【解析】先求出的值,然后利用標準差公式求解即可【詳解】解:因為五個數(shù)據(jù)3,4,x,6,7的平均數(shù)是x,所以,解得,所以標準差,故選:B9、B【解析】根據(jù)球的性質可求出截面圓的半徑即可求解.【詳解】由球的性質可知,截面圓的半徑為,所以截面的面積.故選:B10、D【解析】連接Q和右焦點,可知|OQ|=,可得∠FQ=90°,由得,寫出兩直線方程,聯(lián)立可得Q點坐標,Q點坐標代入橢圓標準方程可得a、b、c關系﹒【詳解】設橢圓右焦點為,連接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,F(xiàn)Q過F(-c,0),Q過(c,0),則,由,∵Q在橢圓上,∴,又,解得,∴離心率故選:D11、B【解析】求出焦點,則可得出,即可求出漸近線方程.【詳解】由橢圓可得焦點為,則設雙曲線方程為,可得,則離心率,解得,則,所以漸近線方程為.故選:B.12、B【解析】①③可以通過分析奇偶性和結合圖象證明出符合要求,②④可以舉出反例.【詳解】是奇函數(shù),且與圓O的兩交點坐標為,能夠將圓O的周長和面積同時等分為兩個部分,故符合題意,①正確;同理函數(shù)是圓O的一個太極函數(shù),③正確;例如,是偶函數(shù),也能將將圓O的周長和面積同時等分為兩個部分,故②錯誤;函數(shù)的圖象關于原點對稱不是為圓O的太極函數(shù)的充要條件,例如為奇函數(shù),但不滿足將圓O的周長和面積同時等分為兩個部分,所以④錯誤;故選:B二、填空題:本題共4小題,每小題5分,共20分。13、64【解析】用字母進行一般化研究,先求出切點弦方程,再聯(lián)立化簡,最后代入數(shù)據(jù)計算【詳解】設,點處的切線方程為聯(lián)立,得由,得即,解得所以點處的切線方程為,整理得同理,點處的切線方程為設為兩切線的交點,則所以在直線上即直線AB的方程為又直線AB經過焦點所以,即聯(lián)立得所以所以本題中所以故答案為:64【點睛】結論點睛:過點作拋物線的兩條切線,切點弦的方程為14、##0.5【解析】分兩種情況,結合相互獨立事件公式即可求解.【詳解】記甲,乙通過聽力測試的分別為事件,則可得,兩人有且僅有一人通過為事件,故所求事件概率為.故答案為:15、若,則【解析】否命題是對命題的條件和結論同時否定,同時否定和即可.命題“若,則”的否命題為:若,則考點:四種命題.16、【解析】根據(jù)雙曲線的定義可得答案.【詳解】因為,所以動點P的軌跡是焦點為A,B,實軸長為4的雙曲線的上支.因為,所以,所以動點P的軌跡方程為故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設等差數(shù)列的公差為,根據(jù)已知條件可得出關于實數(shù)的等式,結合可求得的值,由此可得出數(shù)列的通項公式;(2)利用裂項求和法求出,解不等式即可得出結果.【小問1詳解】解:設等差數(shù)列公差為,則,由題意可得,即,整理得,,解得,故.【小問2詳解】解:,所以,,由得,可得,所以,滿足成立的最大的正整數(shù)的值為.18、(1)增區(qū)間為(2),【解析】(1)求導,由判別式可判斷導數(shù)符號,然后可得;(2)求導,求導數(shù)零點,比較函數(shù)極值和端點函數(shù)值,結合單調性可得.【小問1詳解】因為,所以,,因為,所以恒成立所以的增區(qū)間為.【小問2詳解】當時,,令,解得,當時,,當時,,當時,所以,函數(shù)在上單調遞增,在上單調遞減,在上單調遞增.因為,所以在區(qū)間上的最大值,最小值為19、(1)(2)【解析】(1)結合作差法可直接求解;(2)由錯位相減法可直接求解.【小問1詳解】當時,;當時,,當時,滿足上式,所以;【小問2詳解】由(1)知,所以①,②,①-②得,所以.20、(1)(2),【解析】(1)根據(jù)導數(shù)的幾何意義即可求解;(2)根據(jù)導數(shù)的正負判斷f(x)的單調性,根據(jù)其單調性即可求最大值和最小值.【小問1詳解】,切點為(1,-2),∵,∴切線斜率,切線方程為;【小問2詳解】令,解得,1200極大值極小值2∵,,∴當時,,.21、(1)(2)【解析】(1)為真命題,則都為真命題,求出為真命題時的m的取值范圍,并求交集,即為結果;(2)若是假命題,是真命題,則一真一假,分兩種情況進行求解,最后求并集即為結果.【小問1詳解】由題意得:為真命題,則要滿足,解得:,對任意的恒成立,結合開口向上,所以要滿足:,解得:,要保證是真命題,則與取交集,結果為【小問2詳解】是假命題,是真命題,則一真一假,結合(1)中所求,當真假時,與取交集,結果為;當假真時,與取交集,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論