江西省高安二中2026屆高二數學第一學期期末調研試題含解析_第1頁
江西省高安二中2026屆高二數學第一學期期末調研試題含解析_第2頁
江西省高安二中2026屆高二數學第一學期期末調研試題含解析_第3頁
江西省高安二中2026屆高二數學第一學期期末調研試題含解析_第4頁
江西省高安二中2026屆高二數學第一學期期末調研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省高安二中2026屆高二數學第一學期期末調研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,則()A. B.0C. D.12.設,則“”是“直線與直線平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.如圖,平行六面體中,與的交點為,設,則選項中與向量相等的是()A. B.C. D.4.直線的傾斜角為()A B.C. D.5.劉徽是一個偉大的數學家,他的杰作《九章算術注》和《海島算經》是中國寶貴的數學遺產,他所提出的割圓術可以估算圓周率π,理論上能把π的值計算到任意精度.割圓術的第一步是求圓的內接正六邊形的面積.若在圓內隨機取一點,則此點取自該圓內接正六邊形的概率是()A. B.C. D.6.在長方體中,,,點分別在棱上,,,則()A. B.C. D.7.已知橢圓的左、右頂點分別為,上、下頂點分別為.點為上不在坐標軸上的任意一點,且四條直線的斜率之積大于,則的離心率的取值范圍是()A. B.C. D.8.饕餮(tāotiè)紋,青銅器上常見的花紋之一,盛行于商代至西周早期,最早出現在距今五千年前長江下游地區(qū)的良渚文化玉器上.有人將饕餮紋的一部分畫到了方格紙上,如圖所示,每個小方格的邊長為,有一點從點出發(fā)每次向右或向下跳一個單位長度,且向右或向下跳是等可能性的,那么它經過次跳動后恰好是沿著饕餮紋的路線到達點的概率為()A. B.C. D.9.已知函數,,若對于任意的,存在唯一的,使得,則實數a的取值范圍是()A(e,4) B.(e,4]C.(e,4) D.(,4]10.已知動點滿足,則動點的軌跡是()A.橢圓 B.直線C.線段 D.圓11.設函數是定義在上的函數的導函數,有,若,,則,,的大小關系是()A. B.C. D.12.已知定義在上的函數滿足下列三個條件:①當時,;②的圖象關于軸對稱;③,都有.則、、的大小關系是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某公司青年、中年、老年員工的人數之比為10∶8∶7,從中抽取100名作為樣本,若每人被抽中的概率是0.2,則該公司青年員工的人數為__________14.射擊隊某選手命中環(huán)數的概率如下表所示:命中環(huán)數10987概率0.320.280.180.120.1該選手射擊兩次,兩次命中環(huán)數相互獨立,則他至少命中一次9環(huán)或10環(huán)的概率為_________________.(結果用小數表示)15.若,且數列是嚴格遞增數列或嚴格遞減數列,則實數a取值范圍是______16.已知O為坐標原點,拋物線C:的焦點為F,P為C上一點,PF與x軸垂直,Q為x軸上一點,且,若,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數列的首項,(1)證明:數列是等比數列;(2)設且前項和為,求18.(12分)為了保證我國東海油氣田海域海上平臺的生產安全,海事部門在某平臺O的北偏西45°方向km處設立觀測點A,在平臺O的正東方向12km處設立觀測點B,規(guī)定經過O、A、B三點的圓以及其內部區(qū)域為安全預警區(qū).如圖所示:以O為坐標原點,O的正東方向為x軸正方向,建立平面直角坐標系(1)試寫出A,B的坐標,并求兩個觀測點A,B之間的距離;(2)某日經觀測發(fā)現,在該平臺O正南10kmC處,有一艘輪船正以每小時km的速度沿北偏東45°方向行駛,如果航向不變,該輪船是否會進入安全預警區(qū)?如果不進入,請說明理由;如果進入,則它在安全警示區(qū)內會行駛多長時間?19.(12分)已知橢圓的右頂點為,上頂點為.離心率為,.(1)求橢圓的標準方程;(2)若,是橢圓上異于長軸端點的兩點(斜率不為0),已知直線,且,垂足為,垂足為,若,且的面積是面積的5倍,求面積的最大值.20.(12分)已知函數(1)求在點處的切線方程(2)求直線與曲線圍成的封閉圖形的面積21.(12分)如圖1是,,,,分別是邊,上兩點,且,將沿折起使得,如圖2.(1)證明:圖2中,平面;(2)圖2中,求二面角的正切值.22.(10分)已知拋物線C的焦點為,N為拋物線上一點,且(1)求拋物線C的方程;(2)過點F且斜率為k的直線l與C交于A,B兩點,,求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先求導,再代入求值.詳解】,所以.故選:B2、A【解析】根據兩直線平行的充要條件求出a的值,然后可判斷.【詳解】當時,,所以兩直線平行;若兩直線平行,則且,解得或,所以,“”是“直線與直線平行”的充分不必要條件.故選:A3、B【解析】利用空間向量加減法、數乘的幾何意義,結合幾何體有,進而可知與向量相等的表達式.【詳解】連接,如下圖示:,.故選:B4、C【解析】設直線傾斜角為,則,再結合直線的斜率與傾斜角的關系求解即可.【詳解】設直線的傾斜角為,則,∵,所以.故選:C5、B【解析】此點取自該圓內接正六邊形的概率是正六邊形面積除以圓的面積,分別求出即可.【詳解】如圖,在單位圓中作其內接正六邊形,該正六邊形是六個邊長等于半徑的正三角形,其面積,圓的面積為則所求概率.故選:B【點睛】此題考查幾何概率模型求解,關鍵在于準確求出正六邊形的面積和圓的面積.6、D【解析】依題意可得,從而得到,即可得到,從而得解;【詳解】解:由長方體的性質可得,又,所以,因為,所以,所以,因為,所以;故選:D7、A【解析】設,求得,得到,求得,結合,即可求解.【詳解】由橢圓的方程,可得,設,則,由,因為四條直線的斜率之積大于,即,所以,則離心率,又因為橢圓離心率,所以橢圓的離心率的取值范圍是.故選:A.8、B【解析】本題首先可根據題意列出次跳動的所有基本事件,然后找出沿著饕餮紋的路線到達點的事件,最后根據古典概型的概率計算公式即可得出結果.【詳解】點從點出發(fā),每次向右或向下跳一個單位長度,次跳動的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿著饕餮紋的路線到達點的事件有:(下,下,右),故到達點的概率,故選:B.9、B【解析】結合導數和二次函數的性質可求出和的值域,結合已知條件可得,,從而可求出實數a的取值范圍.【詳解】解:g(x)=x2ex的導函數為g′(x)=2xex+x2ex=x(x+2)ex,當時,,由時,,時,,可得g(x)在[–1,0]上單調遞減,在(0,1]上單調遞增,故g(x)在[–1,1]上的最小值為g(0)=0,最大值為g(1)=e,所以對于任意的,.因為開口向下,對稱軸為軸,又,所以當時,,當時,,則函數在[,2]上的值域為[a–4,a],且函數f(x)在,圖象關于軸對稱,在(,2]上,函數單調遞減.由題意,得,,可得a–4≤0<e<,解得ea≤4故選:B【點睛】本題考查了利用導數求函數的最值,考查了二次函數的性質,屬于中檔題.本題的難點是這一條件的轉化.10、C【解析】根據兩點之間的距離公式的幾何意義即可判定出動點軌跡.【詳解】由題意可知表示動點到點和點的距離之和等于,又因為點和點的距離等于,所以動點的軌跡為線段.故選:11、C【解析】設,求導分析的單調性,又,,,即可得出答案【詳解】解:設,則,又因為,所以,所以在上單調遞增,又,,,因為,所以,所以.故選:C12、A【解析】推導出函數為偶函數,結合已知條件可得出,,,利用導數可知函數在上為減函數,由此可得出、、的大小關系.【詳解】因為函數的圖象關于軸對稱,則,故,,又因為,都有,所以,,所以,,,,因為當時,,,當且僅當時,等號成立,且不恒為零,故函數在上為減函數,因為,則,故.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、200【解析】先根據分層抽樣的方法計算出該單位青年職工應抽取的人數,進而算出青年職工的總人數.【詳解】由題意,從中抽取100名員工作為樣本,需要從該單位青年職工中抽取(人).因為每人被抽中的概率是0.2,所以青年職工共有(人).故答案:200.14、84【解析】先求出該選手射擊兩次,兩次命中的環(huán)數都低于9環(huán)的概率,由對立事件的概率可得答案.【詳解】該選手射擊一次,命中的環(huán)數低于9環(huán)的概率為該選手射擊兩次,兩次命中的環(huán)數都低于9環(huán)的概率為所以他至少命中一次9環(huán)或10環(huán)的概率為故答案:0.8415、【解析】根據數列遞增和遞減的定義求出實數a的取值范圍.【詳解】因為數列是嚴格遞增數列或嚴格遞減數列,所以.若數列是嚴格遞增數列,則,即,即恒成立,故;若數列是嚴格遞減數列,則,即,即恒成立,由,故;綜上,實數a的取值范圍是故答案為:16、3【解析】先求點坐標,再由已知得Q點坐標,由列方程得解.【詳解】拋物線:()的焦點,∵P為上一點,與軸垂直,所以P的橫坐標為,代入拋物線方程求得P的縱坐標為,不妨設,因為Q為軸上一點,且,所以Q在F的右側,又,,,因為,所以,,所以3故答案為:3.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由已知變形得出,即可證得結論成立;(2)計算,利用并項求和法可求得.【小問1詳解】證明:對任意的,,則,且,故數列為等比數列,且該數列的首項為,公比也為,故.【小問2詳解】解:,所以,,因此,.18、(1);(2)會駛入安全預警區(qū),行駛時長為半小時【解析】(1)先求出A,B的坐標,再由距離公式得出A,B之間的距離;(2)由三點的坐標列出方程組得出經過三點的圓的方程,設輪船航線所在的直線為,再由幾何法得出直線與圓截得的弦長,進而得出安全警示區(qū)內行駛時長.【小問1詳解】由題意得,∴;【小問2詳解】設圓的方程為,因為該圓經過三點,∴,得到.所以該圓方程為:,化成標準方程為:.設輪船航線所在的直線為,則直線的方程為:,圓心(6,8)到直線的距離,所以直線與圓相交,即輪船會駛入安全預警區(qū).直線與圓截得的弦長為,行駛時長小時.即在安全警示區(qū)內行駛時長為半小時.19、(1)(2)面積的最大值為【解析】(1)由離心率為,,得,解得,,,進而可得答案(2)設直線的方程為,,,,,聯立直線與橢圓的方程,結合韋達定理可得,,由弦長公式可得,點到直線的距離,則,,由的面積是面積的5倍,解得,再計算的最大值,即可【小問1詳解】解:因為離心率為,,所以,解得,,,所以【小問2詳解】解:設直線的方程為,,,,,聯立,得,所以,,所以,點到直線的距離,所以,,因為的面積是面積的5倍,所以所以或,又因為,是橢圓上異于長軸端點的兩點,所以,所以,令,所以,因為在上單調遞增,所以,(當時,取等號),所以面積的最大值為.20、(1)(2)2【解析】(1)首先求出函數的導函數,即可求出切線的斜率,再利用點斜式求出切線方程;(2)首先求出兩函數的交點坐標,再利用定積分及微積分基本定理計算可得;【小問1詳解】解:因為,所以,所以切線的斜率,切線過點,切線的方程為,即【小問2詳解】解:由題知,即解得或,即或或,直線與曲線于則所求圖形的面積21、(1)證明見解析(2)【解析】(1)、利用線面垂直的判定,及線面垂直的性質即可證明;(2)、建立空間直角坐標系,分別求出平面、平面的法向量,利用求出兩平面所成角的余弦值,進而求出求二面角的正切值.【小問1詳解】由已知得:,平面,又平面,在中,,由余弦定理得:,,即,平面.【小問2詳解】由(1)知:平面,以為坐標原點,建立如圖所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論