版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026統(tǒng)計(jì)學(xué)A考試題庫(kù)及答案1.設(shè)隨機(jī)變量X服從參數(shù)λ=3的泊松分布,求P(X=5|X≥2)。答案:0.0948解析:條件概率公式P(A|B)=P(AB)/P(B)。P(X=5|X≥2)=P(X=5)/P(X≥2)。P(X=5)=e^{-3}3^{5}/5!=0.1008。P(X≥2)=1-P(X=0)-P(X=1)=1-e^{-3}(1+3)=0.8009。比值0.1008/0.8009≈0.0948。2.從N(μ,σ2)中抽取n=16的樣本,得x?=52.3,s=4.7。求μ的95%置信區(qū)間。答案:[50.79,53.81]解析:σ未知,用t分布,自由度15,t_{0.025}=2.131。區(qū)間=x?±t·s/√n=52.3±2.131×4.7/4=52.3±2.51。3.某校想檢驗(yàn)H?:p=0.35vsH?:p>0.35,抽取400人,其中156人支持。求檢驗(yàn)p值并給出結(jié)論(α=0.05)。答案:p=0.041,拒絕H?。解析:樣本比例p?=156/400=0.39。z=(0.39-0.35)/√(0.35×0.65/400)=1.74。單側(cè)p=1-Φ(1.74)=0.041<0.05。4.設(shè)X?,X?,…,X?獨(dú)立同分布于U(0,θ),求θ的極大似然估計(jì)。答案:θ?=X_{(n)}=max{X_i}。解析:似然函數(shù)L(θ)=θ^{-n}I_{x_{(n)}≤θ},當(dāng)θ≥x_{(n)}時(shí)L最大,故取θ?=x_{(n)}。5.在線性模型y=Xβ+ε,ε~N(0,σ2I)中,證明β?=(X?X)^{-1}X?y為BLUE。答案:由高斯-馬爾可夫定理,β?是線性無(wú)偏估計(jì)中方差最小者。解析:任一線性無(wú)偏估計(jì)可寫成Cy,其中CX=I。Var(Cy)=σ2CC?≥σ2(X?X)^{-1}=Var(β?),矩陣意義下≥表示半正定差。6.設(shè)X~Bin(n,p),求E[X3]。答案:E[X3]=np[(n-1)(n-2)p2+3(n-1)p+1]。解析:利用矩母函數(shù)M(t)=(q+pe^{t})^{n},求三階導(dǎo)M?(0)。7.給定數(shù)據(jù)12,14,17,18,21,23,25,28,30,35,求四分位距IQR。答案:11.5解析:Q?位置2.75→14+0.75(17-14)=16.25;Q?位置8.25→28+0.25(30-28)=28.5;IQR=28.5-16.25。8.設(shè)隨機(jī)向量(X,Y)服從二維正態(tài),均值向量(2,3),協(xié)方差矩陣[[4,1],[1,9]],求條件期望E[Y|X=5]。答案:3.25解析:條件期望公式E[Y|X=x]=μ_Y+ρσ_Y/σ_X(x-μ_X),ρ=1/√(4×9)=1/6,代入得3+(1/6)(3/2)(5-2)=3.25。9.某過(guò)程服從參數(shù)λ=0.02的指數(shù)分布,求運(yùn)行100小時(shí)不發(fā)生故障的概率。答案:e^{-2}=0.1353。解析:指數(shù)分布無(wú)記憶性,P(T>100)=e^{-λt}=e^{-0.02×100}。10.設(shè)X~N(0,1),求E[|X|3]。答案:2√(2/π)。解析:利用積分2/√(2π)∫?^∞x3e^{-x2/2}dx,令u=x2/2得2√(2/π)。11.從有限總體2000人中不放回抽取100人,已知總體中30%擁有某特征,求樣本中擁有該特征人數(shù)的標(biāo)準(zhǔn)差。答案:4.58解析:超幾何方差np(1-p)(N-n)/(N-1)=100×0.3×0.7×1900/1999≈21,開方得4.58。12.設(shè)X?,…,X?為來(lái)自Laplace(μ,1)的樣本,求μ的矩估計(jì)。答案:樣本中位數(shù)。解析:Laplace分布均值與中位數(shù)同為μ,但矩估計(jì)一階矩即樣本均值,然而樣本中位數(shù)更穩(wěn)健且MLE對(duì)應(yīng)中位數(shù)。13.證明樣本方差S2是σ2的無(wú)偏估計(jì)。答案:E[S2]=σ2。解析:S2=1/(n-1)∑(X_i-x?)2,展開平方和得E[∑(X_i-μ)2-n(x?-μ)2]=nσ2-nσ2/n=(n-1)σ2,除以n-1得σ2。14.設(shè)X~Poisson(λ),Y~Poisson(μ)獨(dú)立,求P(X=Y)。答案:e^{-(λ+μ)}I?(2√(λμ)),其中I?為零階修正貝塞爾函數(shù)。解析:P(X=Y)=∑_{k=0}^∞e^{-λ}λ^{k}/k!e^{-μ}μ^{k}/k!=e^{-(λ+μ)}∑(λμ)^{k}/(k!)2。15.對(duì)一元線性回歸y_i=β?+β?x_i+ε_(tái)i,求β?的95%置信區(qū)間公式。答案:β??±t_{n-2,0.025}·SE(β??),SE=√(MSE/S_{xx})。解析:t分布自由度n-2,S_{xx}=∑(x_i-x?)2,MSE=SSE/(n-2)。16.設(shè)T~t(v),求E[T2]。答案:v/(v-2),v>2。解析:T2=F(1,v),F(xiàn)期望為v/(v-2)。17.給定5組配對(duì)數(shù)據(jù),差值d:3,1,-2,4,0,求配對(duì)t檢驗(yàn)的t值。答案:1.596解析:d?=1.2,s_d=2.28,n=5,t=d?/(s_d/√n)=1.2/(2.28/√5)=1.596。18.設(shè)X~Gamma(α,β),求眾數(shù)。答案:(α-1)β,α≥1。解析:密度f(wàn)(x)=x^{α-1}e^{-x/β}/(Γ(α)β^{α}),取對(duì)數(shù)導(dǎo)數(shù)為零得x=(α-1)β。19.某檢驗(yàn)功效為0.8,若真實(shí)效應(yīng)增大20%,近似求新功效。答案:0.92解析:功效函數(shù)近似Φ(z_α+Δ√n/σ),Δ增20%,z增0.2×原非中心參數(shù),查表得約0.92。20.設(shè)X~N(μ,1),取n=10,求P(x?-μ>0.5)。答案:0.057解析:x?~N(μ,0.1),標(biāo)準(zhǔn)化z=0.5/√0.1=1.58,單側(cè)尾概率0.057。21.設(shè)隨機(jī)變量Z為標(biāo)準(zhǔn)正態(tài),求P(Z2<2.41)。答案:0.85解析:Z2~χ2(1),查表χ2_{0.85}=2.41,故概率0.85。22.設(shè)X~Bernoulli(p),Y=2X+3(1-X),求Y的方差。答案:4p(1-p)。解析:Y取2概率p,取3概率1-p,Var(Y)=E[Y2]-(EY)2=[4p+9(1-p)]-[2p+3(1-p)]2=4p(1-p)。23.設(shè)樣本相關(guān)系數(shù)r=0.45,n=25,檢驗(yàn)H?:ρ=0的t值。答案:2.38解析:t=r√(n-2)/√(1-r2)=0.45√23/√0.7975=2.38。24.設(shè)X~N(10,16),Y~N(20,9)獨(dú)立,求P(X>Y)。答案:0.0228解析:X-Y~N(-10,25),z=10/5=2,尾概率0.0228。25.設(shè)X?,…,X?為來(lái)自LogNormal(μ,σ2),求E[X?]。答案:e^{μ+σ2/2}。解析:令Z=logX~N(μ,σ2),則E[X]=E[e^{Z}]=M_Z(1)=e^{μ+σ2/2}。26.設(shè)X~Uniform(-1,1),求E[e^{X}]。答案:(e-e^{-1})/2=sinh(1)。解析:∫_{-1}^{1}e^{x}/2dx=(e^{1}-e^{-1})/2。27.設(shè)X~Bin(10,0.2),求P(X≥3)的正態(tài)近似(含連續(xù)性校正)。答案:0.322解析:μ=2,σ=√1.6=1.265,z=(2.5-2)/1.265=0.395,尾概率0.346,再校正更高階得0.322。28.設(shè)X~N(0,1),求其矩母函數(shù)。答案:M(t)=e^{t2/2}。解析:∫e^{tx}φ(x)dx=e^{t2/2}。29.設(shè)X~Exp(λ),求中位數(shù)。答案:ln2/λ。解析:解1-e^{-λm}=0.5?m=ln2/λ。30.設(shè)隨機(jī)變量X取值-2,-1,0,1,2且概率對(duì)稱,P(X=0)=0.2,求峰度。答案:2.1解析:對(duì)稱故偏度0,E[X2]=∑x2p=1.6,E[X?]=∑x?p=5.6,峰度=E[X?]/(E[X2])2=5.6/2.56=2.1。31.設(shè)X~N(μ,σ2),求P(|X-μ|<1.5σ)。答案:0.8664解析:Φ(1.5)-Φ(-1.5)=2Φ(1.5)-1=0.8664。32.設(shè)X~Pareto(α,x_m),求E[X]。答案:αx_m/(α-1),α>1。解析:∫_{x_m}^∞xαx_m^{α}/x^{α+1}dx。33.設(shè)X~N(0,1),Y=X2,求Cov(X,Y)。答案:0解析:E[XY]=E[X3]=0,E[X]=0,故Cov=0。34.設(shè)X~Geometric(p),求P(X為偶數(shù))。答案:(1-p)/(2-p)。解析:∑_{k=1}^∞P(X=2k)=∑(1-p)^{2k-1}p=p(1-p)∑[(1-p)2]^{k-1}=p(1-p)/[1-(1-p)2]。35.設(shè)X~N(μ,1),取n=16,求E[x?2]。答案:μ2+1/16。解析:E[x?2]=Var(x?)+(E[x?])2=1/16+μ2。36.設(shè)X~Beta(2,3),求眾數(shù)。答案:0.25解析:(α-1)/(α+β-2)=1/3≈0.333,但密度導(dǎo)數(shù)為零得x=(α-1)/(α+β-2)=1/3,再驗(yàn)算得0.333,原筆誤修正。37.設(shè)X~N(0,1),求E[Φ(X)]。答案:0.5解析:Φ(X)服從Uniform(0,1),故期望0.5。38.設(shè)X~Bin(n,p),求其眾數(shù)。答案:?(n+1)p?。解析:比較相鄰概率比值。39.設(shè)X~Poisson(λ),求P(X為偶數(shù))。答案:e^{-λ}cosh(λ)。解析:∑_{k=0}^∞e^{-λ}λ^{2k}/(2k)!=e^{-λ}cosh(λ)。40.設(shè)X~N(μ,σ2),求P(X>μ+σ|X>μ)。答案:0.317解析:條件概率=P(X>μ+σ)/P(X>μ)=0.1587/0.5=0.317。41.設(shè)X~Uniform(0,1),Y=-lnX,求Y的分布。答案:Exp(1)。解析:變換法,f_Y(y)=f_X(e^{-y})|dx/dy|=e^{-y}。42.設(shè)X~N(0,1),求E[X?]。答案:3。解析:矩公式E[X^{2k}]=(2k-1)!!。43.設(shè)X~Gamma(α,β),求Var(X)。答案:αβ2。解析:已知。44.設(shè)X~N(μ,1),Y~N(μ,1)獨(dú)立,求P(|X-Y|<1)。答案:0.6826解析:X-Y~N(0,2),z=1/√2=0.707,概率2Φ(0.707)-1=0.6826。45.設(shè)X~Bin(8,0.5),求偏度。答案:0解析:對(duì)稱二項(xiàng),偏度0。46.設(shè)X~N(0,1),求P(X<0|X2<1)。答案:0.5解析:對(duì)稱性。47.設(shè)X~Exp(λ),求P(X>t+s|X>s)。答案:e^{-λt}。解析:無(wú)記憶性。48.設(shè)X~N(μ,σ2),求其熵。答案:ln(σ√(2πe))。解析:連續(xù)熵公式。49.設(shè)X~Poisson(λ),求P(X=k+1)/P(X=k)。答案:λ/(k+1)。解析:比值即λ/(k+1)。50.設(shè)X~N(0,1),求P(X>2.5)。答案:0.0062解析:查表。51.設(shè)X~Uniform(a,b),求Var(X)。答案:(b-a)2/12。解析:已知。52.設(shè)X~Bernoulli(p),求矩母函數(shù)。答案:q+pe^{t}。解析:定義。53.設(shè)X~N(0,1),求P(X2>3.84)。答案:0.05解析:χ2(1)的0.05臨界值。54.設(shè)X~Bin(100,0.01),求P(X=0)的泊松近似。答案:e^{-1}=0.3679。解析:λ=np=1。55.設(shè)X~N(μ,σ2),求中位數(shù)。答案:μ。解析:對(duì)稱。56.設(shè)X~Gamma(α,β),求矩母函數(shù)。答案:(1-βt)^{-α},t<1/β。解析:積分。57.設(shè)X~N(0,1),求E[|X|]。答案:√(2/π)。解析:積分。58.設(shè)X~Exp(λ),求眾數(shù)。答案:0。解析:密度單調(diào)降。59.設(shè)X~Beta(1,1),求分布。答案:Uniform(0,1)。解析:密度常數(shù)。60.設(shè)X~N(0,1),求P(X<1.645)。答案:0.95解析:查表。61.設(shè)X~Poisson(λ),求Var(X)。答案:λ。解析:已知。62.設(shè)X~Geometric(p),求期望。答案:1/p。解析:已知。63.設(shè)X~N(μ,σ2),求P(μ-σ<X<μ+σ)。答案:0.6826解析:1σ規(guī)則。64.設(shè)X~Bin(n,p),求其矩母函數(shù)。答案:(q+pe^{t})^{n}。解析:定義。65.設(shè)X~N(0,1),求P(X>0)。答案:0.5解析:對(duì)稱。66.設(shè)X~Uniform(0,1),求E[X2]。答案:1/3。解析:∫x2dx。67.設(shè)X~Exp(λ),求E[X2]。答案:2/λ2。解析:Var+Mean2。68.設(shè)X~N(0,1),求P(X<?1)。答案:0.1587解析:對(duì)稱。69.設(shè)X~Poisson(λ),求P(X=1)。答案:λe^{-λ}。解析:定義。70.設(shè)X~Bernoulli(p),求Var(X)。答案:p(1-p)。解析:已知。71.設(shè)X~N(μ,σ2),求P(X=μ)。答案:0解析:連續(xù)分布單點(diǎn)概率零。72.設(shè)X~Gamma(α,β),求E[1/X],α>1。答案:1/[β(α-1)]。解析:積分。73.設(shè)X~N(0,1),求P(X2<1)。答案:0.6826解析:同|X|<1。74.設(shè)X~Bin(5,0.5),求P(X=2)。答案:0.3125解析:C(5,2)/32=10/32。75.設(shè)X~Exp(λ),求P(X<1/λ)。答案:1-e^{-1}=0.6321。解析:CDF。76.設(shè)X~N(0,1),求P(0<X<1.5)。答案:0.4332解析:Φ(1.5)-0.5。77.設(shè)X~Poisson(λ),求P(X>0)。答案:1-e^{-λ}。解析:補(bǔ)事件。78.設(shè)X~Uniform(-1,1),求P(X2<0.25)。答案:0.5解析:區(qū)間長(zhǎng)度1。79.設(shè)X~N(μ,σ2),求P(X>μ)。答案:0.5解析:對(duì)稱。80.設(shè)X~Geometric(p),求P(X≤3)。答案:1-(1-p)3。解析:CDF。81.設(shè)X~N(0,1),求P(|X|>2)。答案:0.0455解析:2×0.0228。82.設(shè)X~Beta(2,2),求期望。答案:0.5解析:α/(α+β)。83.設(shè)X~Gamma(α,β),求眾數(shù)。答案:(α-1)β,α≥1。解析:導(dǎo)數(shù)為零。84.設(shè)X~N(0,1),求P(X<?0.5)。答案:0.3085解析:查表。85.設(shè)X~Bin(3,0.3),求P(X≥2)。答案:0.216解析:P(2)+P(3)=3×0.32×0.7+0.33=0.189+0.027。86.設(shè)X~Exp(λ),求P(X>λ^{-1}ln2)。
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒鋼琴考試真題及答案
- 阿里巴巴秋招面試題及答案
- 成人資格考試題庫(kù)及答案
- 中共南充市委老干部局中共南充市委市直屬機(jī)關(guān)工作委員會(huì)2025年公開遴選公務(wù)員(參照管理人員)的(3人)考試備考題庫(kù)必考題
- 中國(guó)金融出版社有限公司2026校園招聘4人參考題庫(kù)必考題
- 南充市農(nóng)業(yè)農(nóng)村局2025年公開遴選公務(wù)員(參照管理人員)(2人)備考題庫(kù)必考題
- 吉水縣司法局2025年面向社會(huì)公開招聘10名司法協(xié)理員的備考題庫(kù)附答案
- 巴中職業(yè)技術(shù)學(xué)院2026年1月人才招聘參考題庫(kù)附答案
- 成都市規(guī)劃和自然資源局所屬事業(yè)單位2025年公開選調(diào)工作人員(20人)備考題庫(kù)附答案
- 浙江臺(tái)州市臨海市教育系統(tǒng)(初)面向2026年普通高校畢業(yè)生招聘教師12人參考題庫(kù)必考題
- 話語(yǔ)體系構(gòu)建的文化自信與敘事創(chuàng)新課題申報(bào)書
- 2026年春蘇教版新教材小學(xué)科學(xué)二年級(jí)下冊(cè)(全冊(cè))教學(xué)設(shè)計(jì)(附教材目錄P97)
- 2026年基因測(cè)序技術(shù)臨床應(yīng)用報(bào)告及未來(lái)五至十年生物科技報(bào)告
- 服裝銷售年底總結(jié)
- 文物安全保護(hù)責(zé)任書范本
- 廣東省惠州市某中學(xué)2025-2026學(xué)年七年級(jí)歷史上學(xué)期期中考試題(含答案)
- 2025公文寫作考試真題及答案
- 停電施工方案優(yōu)化(3篇)
- DB64∕T 1279-2025 鹽堿地綜合改良技術(shù)規(guī)程
- 2025年度耳鼻喉科工作總結(jié)及2026年工作計(jì)劃
- 2024年執(zhí)業(yè)藥師《藥學(xué)專業(yè)知識(shí)(一)》試題及答案
評(píng)論
0/150
提交評(píng)論