版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河源市連平縣中考試題猜想數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.計算的結果是()A. B. C. D.12.如圖給定的是紙盒的外表面,下面能由它折疊而成的是()A. B. C. D.3.如圖,熱氣球的探測器顯示,從熱氣球A看一棟樓頂部B的仰角為30°,看這棟樓底部C的俯角為60°,熱氣球A與樓的水平距離為120米,這棟樓的高度BC為()A.160米 B.(60+160) C.160米 D.360米4.計算(﹣3)﹣(﹣6)的結果等于()A.3B.﹣3C.9D.185.的相反數(shù)是()A. B.- C. D.6.如果一個多邊形的內角和是外角和的3倍,則這個多邊形的邊數(shù)是()A.8 B.9 C.10 D.117.如圖,在中,,,,點分別在上,于,則的面積為()A. B. C. D.8.甲、乙兩人約好步行沿同一路線同一方向在某景點集合,已知甲乙二人相距660米,二人同時出發(fā),走了24分鐘時,由于乙距離景點近,先到達等候甲,甲共走了30分鐘也到達了景點與乙相遇.在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程(米)與甲出發(fā)的時間(分鐘)之間的關系如圖所示,下列說法錯誤的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距離景點2100米 D.乙距離景點420米9.如圖,點A,B在反比例函數(shù)y=1x(x>0)的圖象上,點C,D在反比例函數(shù)y=A.4 B.3 C.2 D.310.下列方程中,沒有實數(shù)根的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知圓錐的母線SA的長為4,底面半徑OA的長為2,則圓錐的側面積等于.12.如圖所示,扇形OMN的圓心角為45°,正方形A1B1C1A2的邊長為2,頂點A1,A2在線段OM上,頂點B1在弧MN上,頂點C1在線段ON上,在邊A2C1上取點B2,以A2B2為邊長繼續(xù)作正方形A2B2C2A3,使得點C2在線段ON上,點A3在線段OM上,……,依次規(guī)律,繼續(xù)作正方形,則A2018M=__________.13.如圖,已知是的高線,且,,則_________.14.如圖,某海監(jiān)船以20km/h的速度在某海域執(zhí)行巡航任務,當海監(jiān)船由西向東航行至A處時,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達C處,此時海監(jiān)船與島嶼P之間的距離(即PC的長)為_____km.15.如圖,在兩個同心圓中,三條直徑把大、小圓都分成相等的六個部分,若隨意向圓中投球,球落在黑色區(qū)域的概率是______.16.如圖,在△ABC中,D,E分別是AB,AC邊上的點,DE∥BC.若AD=6,BD=2,DE=3,則BC=______.三、解答題(共8題,共72分)17.(8分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.(1)求小明選擇去白鹿原游玩的概率;(2)用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.18.(8分)如圖,拋物線y=ax2+bx+c與x軸的交點分別為A(﹣6,0)和點B(4,0),與y軸的交點為C(0,3).(1)求拋物線的解析式;(2)點P是線段OA上一動點(不與點A重合),過P作平行于y軸的直線與AC交于點Q,點D、M在線段AB上,點N在線段AC上.①是否同時存在點D和點P,使得△APQ和△CDO全等,若存在,求點D的坐標,若不存在,請說明理由;②若∠DCB=∠CDB,CD是MN的垂直平分線,求點M的坐標.19.(8分)經過江漢平原的滬蓉(上海﹣成都)高速鐵路即將動工.工程需要測量漢江某一段的寬度.如圖①,一測量員在江岸邊的A處測得對岸岸邊的一根標桿B在它的正北方向,測量員從A點開始沿岸邊向正東方向前進100米到達點C處,測得∠ACB=68°.(1)求所測之處江的寬度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的測量方案外,請你再設計一種測量江寬的方案,并在圖②中畫出圖形.(不用考慮計算問題,敘述清楚即可)20.(8分)“六一”期間,小張購述100只兩種型號的文具進行銷售,其中A種型號的文具進價為10元/只,售價為12元,B種型號的文具進價為15元1只,售價為23元/只.(1)小張如何進貨,使進貨款恰好為1300元?(2)如果購進A型文具的數(shù)量不少于B型文具數(shù)量的倍,且要使銷售文具所獲利潤不低于500元,則小張共有幾種不同的購買方案?哪一種購買方案使銷售文具所獲利潤最大?21.(8分)如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點O,交BC于點E,AD∥BC,連接CD.(1)求證:AO=EO;(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結論.22.(10分)對x,y定義一種新運算T,規(guī)定T(x,y)=(其中a,b是非零常數(shù),且x+y≠0),這里等式右邊是通常的四則運算.如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)=(用含a,b的代數(shù)式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a與b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.23.(12分)如圖,正方形ABCD中,BD為對角線.(1)尺規(guī)作圖:作CD邊的垂直平分線EF,交CD于點E,交BD于點F(保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,若AB=4,求△DEF的周長.24.已知直線y=mx+n(m≠0,且m,n為常數(shù))與雙曲線y=(k<0)在第一象限交于A,B兩點,C,D是該雙曲線另一支上兩點,且A、B、C、D四點按順時針順序排列.(1)如圖,若m=﹣,n=,點B的縱坐標為,①求k的值;②作線段CD,使CD∥AB且CD=AB,并簡述作法;(2)若四邊形ABCD為矩形,A的坐標為(1,5),①求m,n的值;②點P(a,b)是雙曲線y=第一象限上一動點,當S△APC≥24時,則a的取值范圍是.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)同分母分式的加法法則計算可得結論.【詳解】===1.故選D.本題考查了分式的加減法,解題的關鍵是掌握同分母分式的加減運算法則.2、B【解析】
將A、B、C、D分別展開,能和原圖相對應的即為正確答案:【詳解】A、展開得到,不能和原圖相對應,故本選項錯誤;B、展開得到,能和原圖相對,故本選項正確;C、展開得到,不能和原圖相對應,故本選項錯誤;D、展開得到,不能和原圖相對應,故本選項錯誤.故選B.3、C【解析】
過點A作AD⊥BC于點D.根據(jù)三角函數(shù)關系求出BD、CD的長,進而可求出BC的長.【詳解】如圖所示,過點A作AD⊥BC于點D.在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD?tan30°=120×=m;在Rt△ADC中,∠DAC=60°,CD=AD?tan60°=120×=m.∴BC=BD+DC=m.故選C.本題主要考查三角函數(shù),解答本題的關鍵是熟練掌握三角函數(shù)的有關知識,并牢記特殊角的三角函數(shù)值.4、A【解析】原式=?3+6=3,故選A5、C【解析】
根據(jù)只有符號不同的兩個數(shù)互為相反數(shù)進行解答即可.【詳解】與只有符號不同,所以的相反數(shù)是,故選C.本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關鍵.6、A【解析】分析:根據(jù)多邊形的內角和公式及外角的特征計算.詳解:多邊形的外角和是360°,根據(jù)題意得:
110°?(n-2)=3×360°
解得n=1.
故選A.點睛:本題主要考查了多邊形內角和公式及外角的特征.求多邊形的邊數(shù),可以轉化為方程的問題來解決.7、C【解析】
先利用三角函數(shù)求出BE=4m,同(1)的方法判斷出∠1=∠3,進而得出△ACQ∽△CEP,得出比例式求出PE,最后用面積的差即可得出結論;【詳解】∵,
∴CQ=4m,BP=5m,
在Rt△ABC中,sinB=,tanB=,
如圖2,過點P作PE⊥BC于E,
在Rt△BPE中,PE=BP?sinB=5m×=3m,tanB=,
∴,
∴BE=4m,CE=BC-BE=8-4m,
同(1)的方法得,∠1=∠3,
∵∠ACQ=∠CEP,
∴△ACQ∽△CEP,
∴,∴,
∴m=,
∴PE=3m=,
∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故選C.本題是相似形綜合題,主要考查了相似三角形的判定和性質,三角形的面積的計算方法,判斷出△ACQ∽△CEP是解題的關鍵.8、D【解析】
根據(jù)圖中信息以及路程、速度、時間之間的關系一一判斷即可.【詳解】甲的速度==70米/分,故A正確,不符合題意;設乙的速度為x米/分.則有,660+24x-70×24=420,解得x=60,故B正確,本選項不符合題意,70×30=2100,故選項C正確,不符合題意,24×60=1440米,乙距離景點1440米,故D錯誤,故選D.本題考查一次函數(shù)的應用,行程問題等知識,解題的關鍵是讀懂圖象信息,靈活運用所學知識解決問題.9、B【解析】
首先根據(jù)A,B兩點的橫坐標,求出A,B兩點的坐標,進而根據(jù)AC//BD//y軸,及反比例函數(shù)圖像上的點的坐標特點得出C,D兩點的坐標,從而得出AC,BD的長,根據(jù)三角形的面積公式表示出S△OAC,S△ABD的面積,再根據(jù)△OAC與△ABD的面積之和為32【詳解】把x=1代入y=1∴A(1,1),把x=2代入y=1x得:y=∴B(2,12∵AC//BD//y軸,∴C(1,K),D(2,k2∴AC=k-1,BD=k2-1∴S△OAC=12S△ABD=12(k2-又∵△OAC與△ABD的面積之和為32∴12(k-1)×1+12(k2-1故答案為B.:此題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點的坐標特征,熟練掌握反比例函數(shù)k的幾何意義是解本題的關鍵.10、B【解析】
分別計算四個方程的判別式的值,然后根據(jù)判別式的意義確定正確選項.【詳解】解:A、△=(-2)2-4×(-3)=16>0,方程有兩個不相等的兩個實數(shù)根,所以A選項錯誤;
B、△=(-2)2-4×3=-8<0,方程沒有實數(shù)根,所以B選項正確;
C、△=(-2)2-4×1=0,方程有兩個相等的兩個實數(shù)根,所以C選項錯誤;
D、△=(-2)2-4×(-1)=8>0,方程有兩個不相等的兩個實數(shù)根,所以D選項錯誤.
故選:B.本題考查根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0根時,方程有兩個不相等的兩個實數(shù)根;當△=0時,方程有兩個相等的兩個實數(shù)根;當△<0時,方程無實數(shù)根.二、填空題(本大題共6個小題,每小題3分,共18分)11、8π【解析】
圓錐的側面積就等于母線長乘底面周長的一半.依此公式計算即可.【詳解】側面積=4×4π÷2=8π.故答案為8π.本題主要考查了圓錐的計算,正確理解圓錐的側面積的計算可以轉化為扇形的面積的計算,理解圓錐與展開圖之間的關系.12、.【解析】
探究規(guī)律,利用規(guī)律即可解決問題.【詳解】∵∠MON=45°,∴△C2B2C2為等腰直角三角形,∴C2B2=B2C2=A2B2.∵正方形A2B2C2A2的邊長為2,∴OA3=AA3=A2B2=A2C2=2.OA2=4,OM=OB2=,同理,可得出:OAn=An-2An=An-2An-2=,∴OA2028=A2028A2027=,∴A2028M=2-.故答案為2-.本題考查規(guī)律型問題,解題的關鍵是學會探究規(guī)律的方法,學會利用規(guī)律解決問題,屬于中考??碱}型.13、4cm【解析】
根據(jù)三角形的高線的定義得到,根據(jù)直角三角形的性質即可得到結論.【詳解】解:∵是的高線,∴,∵,,∴.故答案為:4cm.本題考查了三角形的角平分線、中線、高線,含30°角的直角三角形,熟練掌握直角三角形的性質是解題的關鍵.14、40【解析】
首先證明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解決問題.【詳解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由題意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB?tan60°,∴PC=2×20×=40(km),故答案為40.本題考查解直角三角形的應用﹣方向角問題,解題的關鍵是證明PB=BC,推出∠C=30°.15、【解析】
根據(jù)幾何概率的求法:球落在黑色區(qū)域的概率就是黑色區(qū)域的面積與總面積的比值.【詳解】解:由圖可知黑色區(qū)域與白色區(qū)域的面積相等,故球落在黑色區(qū)域的概率是=.本題考查幾何概率的求法:首先根據(jù)題意將代數(shù)關系用面積表示出來,一般用陰影區(qū)域表示所求事件(A);然后計算陰影區(qū)域的面積在總面積中占的比例,這個比例即事件(A)發(fā)生的概率.16、1【解析】
根據(jù)已知DE∥BC得出=進而得出BC的值【詳解】∵DE∥BC,AD=6,BD=2,DE=3,∴△ADE∽△ABC,∴,∴,∴BC=1,故答案為1.此題考查了平行線分線段成比例的性質,解題的關鍵在于利用三角形的相似求三角形的邊長.三、解答題(共8題,共72分)17、(1);(2)【解析】
(1)利用概率公式直接計算即可;
(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與小明和小華都選擇去同一個地方游玩的情況,再利用概率公式即可求得答案.【詳解】(1)∵小明準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,∴小明選擇去白鹿原游玩的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結果,其中選擇同種方案有1種,所以小明和小華都選擇去秦嶺國家植物園游玩的概率=.本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,求出概率.18、(1)y=﹣x2﹣x+3;(2)①點D坐標為(﹣,0);②點M(,0).【解析】
(1)應用待定系數(shù)法問題可解;(2)①通過分類討論研究△APQ和△CDO全等②由已知求點D坐標,證明DN∥BC,從而得到DN為中線,問題可解.【詳解】(1)將點(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴拋物線解析式為:y=-x2-x+3;(2)①存在點D,使得△APQ和△CDO全等,當D在線段OA上,∠QAP=∠DCO,AP=OC=3時,△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴點D坐標為(-,0).由對稱性,當點D坐標為(,0)時,由點B坐標為(4,0),此時點D(,0)在線段OB上滿足條件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,則點D坐標為(-1,0)且AD=BD=5,連DN,CM,則DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,則點N為AC中點.∴DN時△ABC的中位線,∵DN=DM=BC=,∴OM=DM-OD=∴點M(,0)本題是二次函數(shù)綜合題,考查了二次函數(shù)待定系數(shù)法、三角形全等的判定、銳角三角形函數(shù)的相關知識.解答時,注意數(shù)形結合.19、(1)21米(2)見解析【解析】試題分析:(1)根據(jù)題意易發(fā)現(xiàn),直角三角形ABC中,已知AC的長度,又知道了∠ACB的度數(shù),那么AB的長就不難求出了.(2)從所畫出的圖形中可以看出是利用三角形全等、三角形相似、解直角三角形的知識來解決問題的.解:(1)在Rt△BAC中,∠ACB=68°,∴AB=AC?tan68°≈100×2.1=21(米)答:所測之處江的寬度約為21米.(2)①延長BA至C,測得AC做記錄;②從C沿平行于河岸的方向走到D,測得CD,做記錄;③測AE,做記錄.根據(jù)△BAE∽△BCD,得到比例線段,從而解答20、(1)A種文具進貨40只,B種文具進貨60只;(2)一共有三種購貨方案,購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【解析】
(1)設可以購進A種型號的文具x只,則可以購進B種型號的文具只,根據(jù)總價=單價×數(shù)量結合A、B兩種文具的進價及總價,即可得出關于x的一元一次方程,解之即可得出結論;(2)根據(jù)題意列不等式,解之即可得出x的取值范圍,再根據(jù)一次函數(shù)的性質,即可解決最值問題.【詳解】(1)設A種文具進貨x只,B種文具進貨只,由題意得:,解得:x=40,,答:A種文具進貨40只,B種文具進貨60只;(2)設購進A型文具a只,則有,且;解得:,∵a為整數(shù),∴a=48、49、50,一共有三種購貨方案;利潤,∵,w隨a增大而減小,當a=48時W最大,即購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.本題主要考查了一次函數(shù)的實際問題,熟練掌握一次函數(shù)表達式的確定以及自變量取值范圍的確定,最值的求解方法是解決本題的關鍵.21、(1)詳見解析;(2)平行四邊形.【解析】
(1)由“三線合一”定理即可得到結論;
(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根據(jù)垂直平分線的性質有AB=BE,于是AD=BE,進而得到AD=EC,根據(jù)平行四邊形的判定即可得到結論.【詳解】證明:(1)∵BD平分∠ABC,AE⊥BD,∴AO=EO;(2)平行四邊形,證明:∵AD∥BC,∴∠ADB=∠ABD,∴AD=AB,∵OA=OE,OB⊥AE,∴AB=BE,∴AD=BE,∵BE=CE,∴AD=EC,∴四邊形AECD是平行四邊形.考查等腰直角三角形的性質以及平行四邊形的判定,掌握平行四邊形的判定方法是解題的關鍵.22、(1);(2)①a=1,b=-1,②m=2.【解析】
(1)根據(jù)題目中的新運算法則計算即可;(2)①根據(jù)題意列出方程組即可求出a,b的值;②先分別算出T(3m﹣3,m)與T(m,3m﹣3)的值,再根據(jù)求出的值列出等式即可得出結論.【詳解】解:(1)T(4,﹣1)==;故答案為;(2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,∴解得②解法一:∵a=1,b=﹣1,且x+y≠0,∴T(x,y)===x﹣y.∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,T(m,3m﹣3)=m﹣3m+3=﹣2m+3.∵T(3m﹣3,m)=T(m,3m﹣3),∴2m﹣3=﹣2m+3,解得,m=2.解法二:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 老年糖尿病患者的個體化溝通方案
- 油制氫裝置操作工風險識別評優(yōu)考核試卷含答案
- 變壓器試驗工操作評估測試考核試卷含答案
- 高壓試驗工崗前決策判斷考核試卷含答案
- 膠印版材生產工崗前技術改進考核試卷含答案
- 脂肪醇胺化操作工發(fā)展趨勢競賽考核試卷含答案
- 棉花加工工崗前核心管理考核試卷含答案
- 玩具設計師崗前安全綜合考核試卷含答案
- 石作文物修復師創(chuàng)新思維能力考核試卷含答案
- 老年神經外科手術麻醉風險評估工具
- 初中英語必背3500詞匯(按字母順序+音標版)
- 《國家基層高血壓防治管理指南2025版》解讀 2
- 實施指南(2025)《HG-T 6214-2023 鄰氨基苯酚》
- 安全生產相關工作主要業(yè)績及研究成果
- 2025廣西百色能源投資發(fā)展集團有限公司招聘7人(第一批)筆試歷年參考題庫附帶答案詳解
- 地下礦山職工安全培訓課件
- 供熱安全培訓課件
- 供水管網搶修課件
- 培訓意識形態(tài)課件
- 運輸公司安全領導小組會議記錄內容
- 7.2動物的特征及類群①課件-滬教版生物七年級下冊
評論
0/150
提交評論