版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省余姚市第四中學(xué)2026屆數(shù)學(xué)高二上期末調(diào)研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù),滿足,則的最小值是()A. B.C. D.2.三棱錐A-BCD中,E,F(xiàn),H分別為邊CD,AD,BC的中點,BE,DH的交點為G,則的化簡結(jié)果為()A. B.C. D.3.若雙曲線(,)的焦距為,且漸近線經(jīng)過點,則此雙曲線的方程為()A. B.C. D.4.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B.C. D.5.如圖是拋物線形拱橋,當(dāng)水面在n時,拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為()A. B.C. D.6.設(shè).若,則=()A. B.C. D.e7.點到直線的距離為2,則的值為()A.0 B.C.0或 D.0或8.若關(guān)于x的不等式的解集為,則關(guān)于x的不等式的解集是()A. B.,或C.,或 D.,或,或9.圓關(guān)于直線對稱,則的最小值是()A. B.C. D.10.設(shè)函數(shù),則曲線在點處的切線方程為()A. B.C. D.11.已知圓,圓,則兩圓的公切線的條數(shù)為()A.1 B.2C.3 D.412.已知函數(shù),若,則()A. B.0C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.曲線的一條切線的斜率為,該切線的方程為________.14.已知焦點在軸上的雙曲線,其漸近線方程為,焦距為,則該雙曲線的標準方程為________15.若一個球表面積為,則該球的半徑為____________16.等差數(shù)列前項之和為,若,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:,右焦點為F(,0),且離心率為(1)求橢圓C的標準方程;(2)設(shè)M,N是橢圓C上不同的兩點,且直線MN與圓O:相切,若T為弦MN的中點,求|OT||MN|的取值范圍18.(12分)已知橢圓過點,且離心率,為坐標原點.(1)求橢圓的方程;(2)判斷是否存在直線,使得直線與橢圓相交于兩點,直線與軸相交于點,且滿足,若存在,求出直線的方程;若不存在,請說明理由.19.(12分)已知等差數(shù)列滿足,.(1)求的通項公式;(2)設(shè),求數(shù)列的前項和.20.(12分)已知橢圓的左、右焦點分別為,,離心率為,過左焦點的直線l與橢圓C交于A,B兩點,的周長為8(1)求橢圓C的標準方程;(2)如圖,,是橢圓C的短軸端點,P是橢圓C上異于點,的動點,點Q滿足,,求證與的面積之比為定值21.(12分)在下列所給的三個條件中任選一個,補充在下面問題中,并完成解答(若選擇多個條件分別解答,則按第一個解答計分).①與直線平行;②與直線垂直;③直線l的一個方向向量為;已知直線l過點,且___________.(1)求直線l的一般方程;(2)若直線l與圓C:相交于M,N兩點,求弦長.22.(10分)如圖,三棱柱的所有棱長都是,平面,為的中點,為的中點(1)證明:直線平面;(2)求平面與平面夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】將化成,即可求出的最小值【詳解】由可化為,所以,解得,因此最小值是故選:A2、D【解析】依題意可得為的重心,由三角形重心的性質(zhì)可知,由中位線定理可知,再利用向量的加法運算法則即可求出結(jié)果【詳解】解:依題意可得為的重心,,,分別為邊,和的中點,,,故選:D3、B【解析】根據(jù)題意得到,,解得答案.【詳解】雙曲線(,)的焦距為,故,.且漸近線經(jīng)過點,故,故,雙曲線方程為:.故選:.【點睛】本題考查了雙曲線方程,意在考查學(xué)生對于雙曲線基本知識的掌握情況.4、C【解析】首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.5、D【解析】由題建立平面直角坐標系,設(shè)拋物線方程為,結(jié)合條件即求.【詳解】建立如圖所示的直角坐標系:設(shè)拋物線方程為,由題意知:在拋物線上,即,解得:,,當(dāng)水位下降1米后,即將代入,即,解得:,∴水面寬為米.故選:D.6、D【解析】由題可得,將代入解方程即可.【詳解】∵,∴,∴,解得.故選:D.7、C【解析】根據(jù)點到直線的距離公式即可得出答案.【詳解】解:點到直線的距離為,解得或.故選:C.8、D【解析】先利用已知一元二次不等式的解集求得參數(shù),再代入所求不等式,利用分式大于零,則分子分母同號,列不等式計算即得結(jié)果.【詳解】不等式解集為,即的二根是1和2,利用根和系數(shù)的關(guān)系可知,故不等式即轉(zhuǎn)化成,即,等價于或者,解得或,或者.故解集為,或,或.故選:D.【點睛】分式不等式的解法:(1)先化簡成右邊為零的形式(或),等價于一元二次不等式(或)再求解即可;(2)先化簡成右邊為零的形式(或),再利用分子分母同號(或者異號),列不等式組求解即可.9、C【解析】先求出圓的圓心坐標,根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標準方程為,因為圓關(guān)于直線對稱,該直線經(jīng)過圓心,即,,,當(dāng)且僅當(dāng),即時取等號,故選:C.10、A【解析】利用導(dǎo)數(shù)的幾何意義求解即可【詳解】由,得,所以切線的斜率為,所以切線方程為,即,故選:A11、B【解析】根據(jù)圓的方程,求得圓心距和兩圓的半徑之和,之差,判斷兩圓的位置關(guān)系求解.【詳解】因為圓,圓,所以,,所以,所以兩圓相交,所以兩圓的公切線的條數(shù)為2,故選:B12、D【解析】求出函數(shù)的導(dǎo)數(shù),直接代入即可求值.【詳解】因為,所以,所以,所以.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】使用導(dǎo)數(shù)運算公式求得切點處的導(dǎo)數(shù)值,并根據(jù)導(dǎo)數(shù)的幾何意義等于切線斜率求得切點的橫坐標,進而得到切點坐標,然后利用點斜式求出切線方程即可.【詳解】的導(dǎo)數(shù)為,設(shè)切點為,可得,解得,即有切點,則切線的方程為,即.故答案為:.【點睛】本題考查導(dǎo)數(shù)的加法運算,導(dǎo)數(shù)的幾何意義,和求切線方程,難度不大,關(guān)鍵是正確的使用導(dǎo)數(shù)運算公式求得切點處的導(dǎo)數(shù)值,14、【解析】根據(jù)漸近線方程、焦距可得,,再根據(jù)雙曲線參數(shù)關(guān)系、焦點的位置寫出雙曲線標準方程.詳解】由題設(shè),可知:,,∴由,可得,,又焦點在軸上,∴雙曲線的標準方程為.故答案為:.15、【解析】設(shè)球的半徑為,代入球的表面積公式得答案【詳解】解:設(shè)球的半徑為,則,得,即或(舍去)故答案為:16、【解析】直接利用等差數(shù)列前項和公式和等差數(shù)列的性質(zhì)求解即可.【詳解】由已知條件得,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)[,3].【解析】(1)由題可得,即求;(2)當(dāng)直線的斜率不存在或為0,易求,當(dāng)直線MN斜率存在且不為0時,設(shè)直線MN的方程為:,利用直線與圓相切可得,再聯(lián)立橢圓方程并應(yīng)用韋達定理求得,然后利用基本不等式即得.【小問1詳解】由題可得,∴??=2,??=∴橢圓C的方程為:;小問2詳解】當(dāng)直線MN斜率為0時,不妨取直線MN為??=,則,此時,則;當(dāng)直線MN斜率不存在,不妨取直線MN為x=,則,此時,則;當(dāng)直線MN斜率存在且不為0時,設(shè)直線MN的方程為:,,因為直線MN與圓相切,所以,即,又因為直線MN與橢圓C交于M,N兩點:由,得,則,所以MN中點T坐標為,則,,所以又,當(dāng)且僅當(dāng),即取等號,∴|OT||MN|;綜上所述:|OT|?|MN|的取值范圍為[,3].18、(1);(2)存在,方程為和.【解析】(1)根據(jù)橢圓上的點、離心率和關(guān)系可構(gòu)造方程求得,由此可得橢圓方程;(2)設(shè),與橢圓方程聯(lián)立可得韋達定理形式,根據(jù)共線向量可得,代入韋達定理中可構(gòu)造關(guān)于的方程,解方程可求得,進而得到直線方程.【小問1詳解】由題意得:,解得:,橢圓的方程為;【小問2詳解】由題意知:直線斜率存在且不為零,可設(shè),,,由得:,則;,,,,,解得:,,滿足條件的直線存在,方程為和.19、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意可得出關(guān)于、的方程組,解出這兩個量的值,可得出數(shù)列的通項公式;(2)求得,利用裂項法可求得.【小問1詳解】解:設(shè)等差數(shù)列的公差為,則,可得,由可得,即,解得,,故.【小問2詳解】解:,因此,.20、(1)(2)證明見解析【解析】(1)根據(jù)周長為8,求得a,再根據(jù)離心率求解;(2)方法一:設(shè),,得到直線和直線的方程,聯(lián)立求得Q的橫坐標,根據(jù)在橢圓上,得到,然后代入Q的橫坐標求解;方法二:設(shè)直線,的斜率分別為k,,點,,直線的方程為,與橢圓方程聯(lián)立,求得點P橫坐標,再由的直線方程聯(lián)立,得到P,Q的橫坐標的關(guān)系求解.【小問1詳解】解:∵的周長為8,∴,即,∵離心率,∴,,∴橢圓C的標準方程為【小問2詳解】方法一:設(shè),則直線斜率,∵,∴直線斜率,∴直線的方程為:,同理直線的方程為:,聯(lián)立上面兩直線方程,消去y,得,∵在橢圓上,∴,即,∴,∴所以與的面積之比為定值4方法二:設(shè)直線,的斜率分別為k,,點,,則直線的方程為,∵,∴直線的方程為,將代入,得,∵P是橢圓上異于點,的點,∴,又∵,即,∴,即,由,得直線的方程為,聯(lián)立得,∴所以與的面積之比為定值421、(1)若選擇①②,則直線方程為:;若選擇③,則直線方程為;(2)若選擇①②,則;若選擇③,則.【解析】(1)根據(jù)所選擇的條件,結(jié)合直線過點,即可寫出直線的方程;(2)利用(1)中所求直線方程,以及弦長公式,即可求得結(jié)果.【小問1詳解】若選①與直線平行,則直線的斜率;又其過點,故直線的方程為,則其一般式為;若選②與直線垂直,則直線的斜率滿足,解得;又其過點,故直線的方程為,則其一般式為;若選③直線l的一個方向向量為,則直線的斜率;又其過點,故直線的方程為,則其一般式為;綜上所述:若選擇①②,則直線方程為:;若選擇③,則直線方程為.【小問2詳解】對圓C:,其圓心為,半徑,根據(jù)(1)中所求,若選擇①②,則直線方程為,則圓心到直線的距離,則直線截圓所得弦長;若選擇③,則直線方程為,則圓心到直線的距離,則直線截圓所得弦長.綜上所述,若選擇①②,則;若選擇③,則.22、(1)證明見解析(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煤制烯烴生產(chǎn)工安全知識水平考核試卷含答案
- 余熱余壓利用系統(tǒng)操作工安全意識強化知識考核試卷含答案
- 硅料腐蝕工風(fēng)險評估與管理強化考核試卷含答案
- 絲麻毛纖維預(yù)處理工安全宣貫?zāi)M考核試卷含答案
- 江浙高中發(fā)展聯(lián)盟2025-2026學(xué)年高三上學(xué)期1月學(xué)情監(jiān)測語文試題附答案
- 統(tǒng)編版本語文高中選擇性必修中冊《屈原列傳》第1課時教學(xué)設(shè)計
- 2026河北衡水市第八中學(xué)招聘備考題庫及參考答案詳解
- 老年術(shù)后3D打印體位調(diào)整輔具設(shè)計
- 企業(yè)級大數(shù)據(jù)分析流程詳解
- 組織胚胎學(xué)基礎(chǔ):細胞周期課件
- 五年級上冊小數(shù)四則混合運算100道及答案
- 高職單招數(shù)學(xué)試題及答案
- 基礎(chǔ)化學(xué)(本科)PPT完整全套教學(xué)課件
- 蕉嶺縣幅地質(zhì)圖說明書
- 玻璃幕墻分項工程質(zhì)量驗收記錄表
- 電梯控制系統(tǒng)論文
- (完整word版)人教版初中語文必背古詩詞(完整版)
- 湖北省地質(zhì)勘查坑探工程設(shè)計編寫要求
- GB/T 4310-2016釩
- GB/T 28799.3-2020冷熱水用耐熱聚乙烯(PE-RT)管道系統(tǒng)第3部分:管件
- 風(fēng)機及塔筒生產(chǎn)全流程檢驗分析課件(-47張)
評論
0/150
提交評論