2026屆江西省上饒縣第二中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第1頁
2026屆江西省上饒縣第二中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第2頁
2026屆江西省上饒縣第二中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第3頁
2026屆江西省上饒縣第二中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第4頁
2026屆江西省上饒縣第二中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆江西省上饒縣第二中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列通項公式,則()A.6 B.13C.21 D.312.命題“”為真命題一個充分不必要條件是()A. B.C. D.3.設(shè)是周期為2的奇函數(shù),當時,,則()A. B.C. D.4.已知,則下列不等式一定成立的是()A. B.C. D.5.將一張坐標紙折疊一次,使點與重合,求折痕所在直線是()A. B.C. D.6.設(shè)是兩個非零向量,則“”是“夾角為鈍角”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.某四面體的三視圖如圖所示,該四面體的體積為()A. B.C. D.9.已知各項均為正數(shù)的等比數(shù)列{},=5,=10,則=A. B.7C.6 D.10.若曲線的一條切線與直線垂直,則的方程為()A. B.C. D.11.已知直線過點,且與直線垂直,則直線的方程是()A. B.C. D.12.若,則n的值為()A.7 B.8C.9 D.10二、填空題:本題共4小題,每小題5分,共20分。13.展開式中,各項系數(shù)之和為1,則實數(shù)_______.(用數(shù)字填寫答案)14.已知等差數(shù)列是首項為的遞增數(shù)列,若,,則滿足條件的數(shù)列的一個通項公式為______15.橢圓C:的左、右焦點分別為,,P為橢圓上異于左右頂點的任意一點,、的中點分別為M、N,O為坐標原點,四邊形OMPN的周長為4,則的周長是_____16.圓與圓的公共弦長為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的展開式中,只有第6項的二項式系數(shù)最大(1)求n的值;(2)求展開式中含的項18.(12分)已知等差數(shù)列的前項和為,,且.(1)求數(shù)列的通項公式;(2)證明:數(shù)列的前項和.19.(12分)已知橢圓的離心率為,且點在橢圓上(1)求橢圓的標準方程;(2)若過定點的直線交橢圓于不同的兩點、(點在點、之間),且滿足,求的取值范圍.20.(12分)如圖,在四棱錐中,底面是矩形,平面于點M連接.(1)求證:平面;(2)求平面與平面所成角的余弦值.21.(12分)如圖,P為圓上一動點,點A坐標為,線段AP的垂直平分線交直線BP于點Q(1)求點Q的軌跡E的方程;(2)過點A的直線l交E于C,D兩點,若△BCD內(nèi)切圓的半徑為,求直線l的方程.22.(10分)已知拋物線:的焦點到頂點的距離為.(1)求拋物線的方程;(2)已知過點的直線交拋物線于不同的兩點,,為坐標原點,設(shè)直線,的斜率分別為,,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】令即得解.【詳解】解:令得.故選:C2、B【解析】求解命題為真命題的充要條件,再利用集合包含關(guān)系判斷【詳解】命題“”為真命題,則≤1,只有是的真子集,故選項B符合題意故選:B3、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質(zhì)通過得結(jié)論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎(chǔ)題.此類題型,求函數(shù)值時,一般先用周期性化自變量到已知區(qū)間關(guān)于原點對稱的區(qū)間,然后再由奇函數(shù)性質(zhì)求得函數(shù)值4、B【解析】運用不等式的性質(zhì)及舉反例的方法可求解.詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B5、D【解析】設(shè),,則折痕所在直線是線段AB的垂直平分線,故求出AB中點坐標,折痕與直線AB垂直,進而求出斜率,用點斜式求出折痕所在直線方程.【詳解】,,所以與的中點坐標為,又,所以折痕所在直線的斜率為1,故折痕所在直線是,即.故選:D6、B【解析】因為時,夾角為鈍角或平角;而當夾角為鈍角時,成立,所以“”是“夾角為鈍角”的必要不充分條件.故選B考點:1向量的數(shù)量積;2充分必要條件7、B【解析】因但8、A【解析】可由三視圖還原原幾何體,然后根據(jù)題意的邊角關(guān)系,完成體積的求解.【詳解】由三視圖還原原幾何體如圖:其中平面,,則該四面體的體積為.故選:A.9、A【解析】由等比數(shù)列的性質(zhì)知,a1a2a3,a4a5a6,a7a8a9成等比數(shù)列,所以a4a5a6=故答案為考點:等比數(shù)列的性質(zhì)、指數(shù)冪的運算、根式與指數(shù)式的互化等知識,轉(zhuǎn)化與化歸的數(shù)學(xué)思想10、A【解析】兩直線垂直,斜率之積為,曲線與直線相切,聯(lián)立方程令.【詳解】法一:直線,所以,所以切線的,設(shè)切線的方程為,聯(lián)立方程,所以,令,解得,所以切線方程為.法二:直線,所以,所以切線的,,所以令,所以,帶入曲線方程得切點坐標為,所以切線方程為,化簡得.故選:A.11、D【解析】由題意設(shè)直線方程為,然后將點坐標代入求出,從而可求出直線方程【詳解】因為直線與直線垂直,所以設(shè)直線方程為,因為直線過點,所以,得,所以直線方程為,故選:D12、D【解析】根據(jù)給定條件利用組合數(shù)的性質(zhì)計算作答【詳解】因為,則由組合數(shù)性質(zhì)有,即,所以n的值為10.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】通過給二項式中的賦值1求出展開式的各項系數(shù)和,即可求出詳解】解:令,得各項系數(shù)之和為,解得故答案為:14、,答案不唯一【解析】由,,可得,進而解得,然后寫出通項公式即可.【詳解】設(shè)數(shù)列的公差為d,由題可得,因為,,所以有,解得,只要公差d滿足即可,然后根據(jù)等差數(shù)列的通項公式寫出即可,我們可以取,此時.故答案為:,答案不唯一.15、【解析】先證明則四邊形OMPN是平行四邊形,進而根據(jù)橢圓定義求出a,再求出c,最后求出答案.【詳解】因為M,O,N分別為的中點,所以,則四邊形OMPN是平行四邊形,所以,由四邊形OMPN的周長為4可知,,即,則,于是的周長是.故答案為:.16、【解析】兩圓方程相減可得公共弦所在直線方程,即該直線截其中一圓求弦長即可【詳解】圓與圓兩式相減得,公共弦所在直線方程為:圓,圓心為到公共弦的距離為:公共弦長故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)10;(2);【解析】(1)利用二項式系數(shù)的性質(zhì)即可求出的值;(2)求出展開式的通項公式,然后令的指數(shù)為即可求解【小問1詳解】∵的展開式中,只有第6項的二項式系數(shù)最大,∴展開后一共有11項,則,解得;【小問2詳解】二項式的展開式的通項公式為,令,解得,∴展開式中含的項為18、(1)(2)證明見解析.【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意可得出關(guān)于、的方程組,解出這兩個量的值,可得出數(shù)列的通項公式;(2)求得,利用裂項法可求得,即可證得原不等式成立.【小問1詳解】解:設(shè)等差數(shù)列的公差為,則,解得,因此,.【小問2詳解】證明:,因此,.故原不等式得證.19、(1)(2)【解析】(1)代入點坐標,結(jié)合離心率,以及即得解;(2)設(shè)直線方程,與橢圓聯(lián)立,轉(zhuǎn)化為,結(jié)合韋達定理和判別式,分析即得解【小問1詳解】由題意可知:,解得:橢圓的標準方程為:【小問2詳解】①當直線斜率不存在,方程為,則,.②當直線斜率存在時,設(shè)直線方程為,聯(lián)立得:.由得:.設(shè),,則,,又,,,則,,所以,所以,解得:,又,綜上所述:的取值范圍為.20、(1)證明見詳解(2)【解析】(1)連接,交于點,則為中點,再由等腰三角形三線合一可知為中點,連接,利用中位線可知,根據(jù)直線與平面平行的判定定理即可證明;(2)根據(jù)題意建立空間直角坐標系,求出兩個平面的法向量,利用向量法即可求出兩平面所成角的余弦值.【小問1詳解】連接,交于點,則為中點,因為,于,則為中點,連接,則,又因為平面,平面,所以平面;【小問2詳解】如圖所示,以點為坐標原點,建立空間直角坐標系,則,,設(shè)平面的一個法向量為,由可得,令,得,即,易知平面的一個法向量為,設(shè)平面與平面所成角為,,則平面與平面所成角的余弦值為.21、(1)(2)【解析】(1)連接,由,利用橢圓的定義求解;(2)設(shè)點,,直線的方程為,與橢圓聯(lián)立,結(jié)合韋達定理,利用等面積法求解.【小問1詳解】解:連接,由題意知:,,即的軌跡為橢圓,其中,,,所以橢圓的標準方程為;【小問2詳解】設(shè)點,,直線的方程為,與橢圓聯(lián)立,消去整理得,顯然成立,故,,由橢圓定義得的周長為,則的面積,又由,得,從而得,即,整理得,解得,故,故直線的方程為.22、(1)(2)【解析】(1)由拋物線的幾何性質(zhì)有焦

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論