2026屆全國(guó)18名校大聯(lián)考高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)
2026屆全國(guó)18名校大聯(lián)考高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)
2026屆全國(guó)18名校大聯(lián)考高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)
2026屆全國(guó)18名校大聯(lián)考高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)
2026屆全國(guó)18名校大聯(lián)考高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆全國(guó)18名校大聯(lián)考高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若一個(gè)正方體的全面積是72,則它的對(duì)角線長(zhǎng)為()A. B.12C. D.62.曲線在處的切線的斜率為()A.-1 B.1C.2 D.33.下列結(jié)論中正確的有()A.若,則 B.若,則C.若,則 D.若,則4.設(shè)雙曲線C:的左、右焦點(diǎn)分別為,點(diǎn)P在雙曲線C上,若線段的中點(diǎn)在y軸上,且為等腰三角形,則雙曲線C的離心率為()A B.2C. D.5.已知拋物線的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)P在拋物線上,直線PF交x軸于Q點(diǎn),且,則點(diǎn)P到準(zhǔn)線l的距離為()A.4 B.5C.6 D.76.從直線上動(dòng)點(diǎn)作圓的兩條切線,切點(diǎn)分別為、,則最大時(shí),四邊形(為坐標(biāo)原點(diǎn))面積是()A. B.C. D.7.點(diǎn)在圓上,點(diǎn)在直線上,則的最小值是()A. B.C. D.8.已知數(shù)列滿足,(且),若恒成立,則M的最小值是()A.2 B.C. D.39.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),為坐標(biāo)原點(diǎn),且,則()A.4 B.2C. D.10.△ABC的兩個(gè)頂點(diǎn)坐標(biāo)A(-4,0),B(4,0),它的周長(zhǎng)是18,則頂點(diǎn)C的軌跡方程是()A. B.(y≠0)C. D.11.函數(shù)的最小值是()A.3 B.4C.5 D.612.等比數(shù)列滿足,,則()A.11 B.C.9 D.二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,若,則該數(shù)列的通項(xiàng)公式__________14.直線與圓交于A、B兩點(diǎn),當(dāng)弦AB的長(zhǎng)度最短時(shí),則三角形ABC的面積為_(kāi)_______15.曲線在點(diǎn)處的切線方程為_(kāi)_________.16.已知內(nèi)角A,B,C的對(duì)邊為a,b,c,已知,且,則c的最小值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線和的交點(diǎn)為P,求:(1)過(guò)點(diǎn)P且與直線垂直的直線l的方程;(2)以點(diǎn)P為圓心,且與直線相交所得弦長(zhǎng)為12的圓的方程;(3)從下面①②兩個(gè)問(wèn)題中選一個(gè)作答,①若直線l過(guò)點(diǎn),且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長(zhǎng)的圓的方程注:如果選擇兩個(gè)問(wèn)題分別作答,按第一個(gè)計(jì)分18.(12分)已知圓,其圓心在直線上.(1)求的值;(2)若過(guò)點(diǎn)的直線與相切,求的方程.19.(12分)在平面直角坐標(biāo)系xOy中,已知拋物線()的焦點(diǎn)F到雙曲線的漸近線的距離為1.(1)求拋物線C的方程;(2)若不經(jīng)過(guò)原點(diǎn)O的直線l與拋物線C交于A、B兩點(diǎn),且,求證:直線l過(guò)定點(diǎn).20.(12分)已知函數(shù).(1)若函數(shù)的圖象在處的切線方程為,求的值;(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的最大值.21.(12分)如圖,在正方體中,是棱的中點(diǎn).(1)試判斷直線與平面的位置關(guān)系,并說(shuō)明理由;(2)求證:直線面.22.(10分)如圖,在棱長(zhǎng)為的正方體中,為中點(diǎn)(1)求二面角的大??;(2)探究線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)全面積得到正方體的棱長(zhǎng),再由勾股定理計(jì)算對(duì)角線.【詳解】設(shè)正方體的棱長(zhǎng)為,對(duì)角線長(zhǎng)為,則有,解得,從而,解得.故選:D2、D【解析】先求解出導(dǎo)函數(shù),然后代入到導(dǎo)函數(shù)中,所求導(dǎo)數(shù)值即為切線斜率.【詳解】因?yàn)?,所以,所以切線的斜率為.故選:D.3、D【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和運(yùn)算法則分別計(jì)算函數(shù)的導(dǎo)數(shù),即可判斷選項(xiàng).【詳解】A.若,則,故A錯(cuò)誤;B.若,則,故B錯(cuò)誤;C.若,則,故C錯(cuò)誤;D.若,則,故D正確.故選:D4、A【解析】根據(jù)是等腰直角三角形,再表示出的長(zhǎng),利用三角形的幾何性質(zhì)即可求得答案.【詳解】線段的中點(diǎn)在y軸上,設(shè)的中點(diǎn)為M,因?yàn)镺為的中點(diǎn),所以,而,則,為等腰三角形,故,由,得,又為等腰直角三角形,故,即,解得,即,故選:A.5、C【解析】根據(jù)題干條件得到相似,進(jìn)而得到,求出點(diǎn)P到準(zhǔn)線l的距離.【詳解】由題意得:,準(zhǔn)線方程為,因?yàn)?,所以,故點(diǎn)P到準(zhǔn)線l的距離為.故選:C6、B【解析】分析可知當(dāng)時(shí),最大,計(jì)算出、,進(jìn)而可計(jì)算得出四邊形(為坐標(biāo)原點(diǎn))面積.【詳解】圓的圓心為坐標(biāo)原點(diǎn),連接、、,則,設(shè),則,,則,當(dāng)取最小值時(shí),,此時(shí),,,,故,此時(shí),.故選:B.7、B【解析】根據(jù)題意可知圓心,又由于線外一點(diǎn)到已知直線的垂線段最短,結(jié)合點(diǎn)到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,所以圓心到的距離為,所以的最小值為.故選:B.8、C【解析】根據(jù),(且),利用累加法求得,再根據(jù)恒成立求解.【詳解】因?yàn)閿?shù)列滿足,,(且)所以,,,,因?yàn)楹愠闪?,所以,則M的最小值是,故選:C9、B【解析】依題意可得,設(shè),根據(jù)可得,,根據(jù)為拋物線上一點(diǎn),可得.【詳解】依題意可得,設(shè),由得,所以,,所以,,因?yàn)闉閽佄锞€上一點(diǎn),所以,解得.故選:B.【點(diǎn)睛】本題考查了平面向量加法的坐標(biāo)運(yùn)算,考查了求拋物線方程,屬于基礎(chǔ)題.10、D【解析】根據(jù)三角形的周長(zhǎng)得出,再由橢圓的定義得頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,可求得頂點(diǎn)C的軌跡方程.【詳解】因?yàn)?,所以,所以頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,即,所以頂點(diǎn)C的軌跡方程是,故選:D.【點(diǎn)睛】本題考查橢圓的定義,由定義求得動(dòng)點(diǎn)的軌跡方程,求解時(shí),注意去掉不滿足的點(diǎn),屬于基礎(chǔ)題.11、D【解析】先判斷函數(shù)的單調(diào)性,再利用其單調(diào)性求最小值【詳解】由,得,因?yàn)椋?,所以在上單調(diào)遞增,所以,故選:D12、B【解析】由已知結(jié)合等比數(shù)列的性質(zhì)即可求解.【詳解】由數(shù)列是等比數(shù)列,得:,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知可得數(shù)列是以為首項(xiàng),3為公比的等比數(shù)列,結(jié)合等比數(shù)列通項(xiàng)公式即可得解.【詳解】解:由在數(shù)列中,若,則數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,由等比數(shù)列通項(xiàng)公式可得,故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列通項(xiàng)公式的求法,重點(diǎn)考查了運(yùn)算能力,屬基礎(chǔ)題.14、【解析】由于直線過(guò)定點(diǎn),所以當(dāng)時(shí),弦AB的長(zhǎng)度最短,然后先求出的長(zhǎng),再利用勾股定理可求出的長(zhǎng),從而可求出三角形ABC的面積【詳解】因?yàn)橹本€恒過(guò)定點(diǎn),圓的圓心,半徑為,所以當(dāng)時(shí),弦AB的長(zhǎng)度最短,因?yàn)?,所以,所以三角形ABC的面積為,故答案為:15、【解析】先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,最后根據(jù)點(diǎn)斜式求切線方程.【詳解】函數(shù)的導(dǎo)數(shù)為,所以切線的斜率,切點(diǎn)為,則切線方程為故答案為:【點(diǎn)睛】易錯(cuò)點(diǎn)睛:求曲線的切線要注意“過(guò)點(diǎn)P的切線”與“在點(diǎn)P處的切線”的差異,過(guò)點(diǎn)P的切線中,點(diǎn)P不一定是切點(diǎn),點(diǎn)P也不一定在已知曲線上,而在點(diǎn)P處的切線,必以點(diǎn)P為切點(diǎn),考查學(xué)生的運(yùn)算能力,屬于基礎(chǔ)題.16、【解析】先利用正弦定理邊化角式子,得到,再利用正弦定理求出,根據(jù)與的關(guān)系,求得,即可求得c的最小值.【詳解】,即,又,當(dāng)最大時(shí),即,最小,且為由正弦定理得:,當(dāng)時(shí),c的最小值為故答案為:【點(diǎn)睛】方法點(diǎn)睛:在解三角形題目中,若已知條件同時(shí)含有邊和角,但不能直接使用正弦定理或余弦定理得到答案,要選擇“邊化角”或“角化邊”,變換原則常用:(1)若式子含有的齊次式,優(yōu)先考慮正弦定理,“角化邊”;(2)若式子含有的齊次式,優(yōu)先考慮正弦定理,“邊化角”;(3)若式子含有的齊次式,優(yōu)先考慮余弦定理,“角化邊”;(4)代數(shù)變形或者三角恒等變換前置;(5)同時(shí)出現(xiàn)兩個(gè)自由角(或三個(gè)自由角)時(shí),要用到.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)(3)答案見(jiàn)解析【解析】(1)聯(lián)立方程組求得交點(diǎn)的坐標(biāo),結(jié)合直線與直線垂直,求得直線的斜率為,利用直線的點(diǎn)斜式,即可求解;(2)先求得點(diǎn)到直線的距離為,由圓的的垂徑定理列出方程求得圓的半徑,即可求解;(3)若選①:設(shè)直線l的的斜率為,得到,結(jié)合題意列出方程,求得的值,即可求解;若選②,設(shè)所求圓的圓心為,半徑為,得到,利用圓的垂徑定理列出方程求得的值,即可求解.【小問(wèn)1詳解】解:由直線和的交點(diǎn)為P,聯(lián)立方程組,解得,即,因?yàn)橹本€與直線垂直,所以直線的斜率為,所以過(guò)點(diǎn)且與直線垂直的直線方程為,即.【小問(wèn)2詳解】解:因?yàn)辄c(diǎn)到直線的距離為,設(shè)所求圓的半徑為,由圓的的垂徑定理得,弦長(zhǎng),解得,所以所求圓的方程為.【小問(wèn)3詳解】解:若選①:直線l過(guò)點(diǎn),且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,設(shè)直線l的的斜率為,可得直線的方程為,即,則直線與坐標(biāo)軸的交點(diǎn)分別為,由,解得或,所以所求直線的方程為或.若選②,設(shè)所求圓的圓心為,半徑為,因?yàn)閳A與x軸相切,可得,又由圓心到直線的距離為,利用圓的垂徑定理可得,即,解得,即圓心坐標(biāo)為或,所以所求圓的方程為或.18、(1)(2)或【解析】(1)將圓的一般方程化為標(biāo)準(zhǔn)方程,求出圓心,代入直線方程即可求解.(2)設(shè)直線的方程為:,利用圓心到直線的距離即可求解.【小問(wèn)1詳解】圓的標(biāo)準(zhǔn)方程為:,所以,圓心為由圓心在直線上,得.所以,圓的方程為:【小問(wèn)2詳解】由題意可知直線的斜率存在,設(shè)直線的方程為:,即由于直線和圓相切,得解得:所以,直線方程為:或.19、(1)(2)證明見(jiàn)解析【解析】(1)求出雙曲線的漸近線方程,由點(diǎn)到直線距離公式可得參數(shù)值得拋物線方程;(2)設(shè)直線方程為,,直線方程代入拋物線方程后應(yīng)用韋達(dá)定理得,代入可得值,得定點(diǎn)坐標(biāo)【小問(wèn)1詳解】已知雙曲線的一條漸近線方程為,即,拋物線的焦點(diǎn)為,所以,解得(因?yàn)椋?,所以拋物線方程為;【小問(wèn)2詳解】由題意設(shè)直線方程為,設(shè)由得,,,又,所以,所以,直線不過(guò)原點(diǎn),,所以所以直線過(guò)定點(diǎn)20、(1);(2).【解析】(1)先對(duì)函數(shù)求導(dǎo),再根據(jù)在處的切線斜率可得到參數(shù)的值,然后代入,求出的值,則即可得出;(2)根據(jù)函數(shù)在上是增函數(shù),可得,即恒成立,再進(jìn)行參變分離,構(gòu)造函數(shù),對(duì)進(jìn)行求導(dǎo)分析,找出最小值,即實(shí)數(shù)的最大值【詳解】解:(1)由題意,函數(shù).故,則,由題意,知,即.又,則.,即..(2)由題意,可知,即恒成立,恒成立.設(shè),則.令,解得.令,解得.令,解得x.在上單調(diào)遞減,在上單調(diào)遞增,在處取得極小值..,故的最大值為.【點(diǎn)睛】本題主要考查利用某點(diǎn)處的一階導(dǎo)數(shù)分析得出參數(shù)的值,參變量分離方法的應(yīng)用,不等式的計(jì)算能力.本題屬中檔題21、(1)平面AEC,理由見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)以線面平行的判定定理去證明直線與平面平行即可;(2)以線面垂直的判定定理去證明直線面即可.【小問(wèn)1詳解】連接BD,設(shè),連接OE.在中,O、E分別是BD、的中點(diǎn),則.因?yàn)橹本€OE在平面AEC上,而直線不在平面AEC上,根據(jù)直線與平面平行的判定定理,得到直線平面AEC.【小問(wèn)2詳解】正方體中,故,又,故同理故,又,故又根據(jù)直線與平面垂直的判定定理,得直線平面.22、(1)(2)點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn)【解析】(1)建立空間直角坐標(biāo)系,分別寫(xiě)出點(diǎn)的坐標(biāo),求出兩個(gè)平面的法向量代入

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論