版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
全國(guó)18名校大聯(lián)考2026屆高二數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.計(jì)算復(fù)數(shù):()A. B.C. D.2.已知事件A,B相互獨(dú)立,,則()A.0.24 B.0.8C.0.3 D.0.163.若且,則下列選項(xiàng)中正確的是()A B.C. D.4.已知點(diǎn)O為坐標(biāo)原點(diǎn),拋物線C:的焦點(diǎn)為F,點(diǎn)T在拋物線C的準(zhǔn)線上,線段FT與拋物線C的交點(diǎn)為W,,則()A.1 B.C. D.5.“”是“方程為雙曲線方程”的()A充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知點(diǎn)F是雙曲線的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過(guò)F作垂直于x軸的直線與雙曲線交于G、H兩點(diǎn),若是銳角三角形,則該雙曲線的離心率e的取值范圍是()A. B.C. D.7.已知雙曲線上的點(diǎn)到的距離為15,則點(diǎn)到點(diǎn)的距離為()A.7 B.23C.5或25 D.7或238.如圖,有一個(gè)水平放置的透明無(wú)蓋的正方體容器,容器高8cm,將一個(gè)球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時(shí)測(cè)得水深為6cm,如果不計(jì)容器的厚度,則球的體積為A. B.C. D.9.等差數(shù)列的公差為2,若成等比數(shù)列,則()A.72 B.90C.36 D.4510.從某個(gè)角度觀察籃球(如圖甲),可以得到一個(gè)對(duì)稱的平面圖形,如圖乙所示,籃球的外輪廓為圓,將籃球表面的粘合線視為坐標(biāo)軸和雙曲線,若坐標(biāo)軸和雙曲線與圓的交點(diǎn)將圓的周長(zhǎng)八等分,且,則該雙曲線的離心率為()A. B.C.2 D.11.某校開(kāi)展研學(xué)活動(dòng)時(shí)進(jìn)行勞動(dòng)技能比賽,通過(guò)初選,選出共6名同學(xué)進(jìn)行決賽,決出第1名到第6名的名次(沒(méi)有并列名次),和去詢問(wèn)成績(jī),回答者對(duì)說(shuō)“很遺?,你和都末拿到冠軍;對(duì)說(shuō)“你當(dāng)然不是最差的”.試從這個(gè)回答中分析這6人的名次排列順序可能出現(xiàn)的結(jié)果有()A.720種 B.600種C.480種 D.384種12.若、且,則下列式子一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.以雙曲線的右焦點(diǎn)為圓心,為半徑的圓與的一條漸近線交于兩點(diǎn),若,則雙曲線的離心率為_(kāi)________14.已知點(diǎn)是拋物線的準(zhǔn)線與x軸的交點(diǎn),F(xiàn)為拋物線的焦點(diǎn),P是拋物線上的動(dòng)點(diǎn),則最小值為_(kāi)____15.甲乙兩艘輪船都要在某個(gè)泊位停靠8個(gè)小時(shí),假定它們?cè)谝粫円沟臅r(shí)間段內(nèi)隨機(jī)地到達(dá),則兩船中有一艘在停靠泊位時(shí)、另一艘船必須等待的概率為_(kāi)_____.16.已知等差數(shù)列的通項(xiàng)公式為,那么它的前項(xiàng)和___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓C:經(jīng)過(guò)點(diǎn),且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點(diǎn),都有.若存在,求出r的值,并求此時(shí)△AOB的面積S的取值范圍;若不存在,請(qǐng)說(shuō)明理由18.(12分)已知橢圓左,右頂點(diǎn)分別是,,且,是橢圓上異于,的不同的兩點(diǎn)(1)若,證明:直線必過(guò)坐標(biāo)原點(diǎn);(2)設(shè)點(diǎn)是以為直徑的圓和以為直徑的圓的另一個(gè)交點(diǎn),記線段的中點(diǎn)為,若,求動(dòng)點(diǎn)的軌跡方程19.(12分)已知橢圓:的離心率為,且經(jīng)過(guò)點(diǎn).(1)求的方程;(2)設(shè)的右焦點(diǎn)為F,過(guò)F作兩條互相垂直的直線AB和DE,其中A,B,D,E都在橢圓上,求的取值范圍.20.(12分)如圖所示,在直四棱柱中,底面ABCD是菱形,點(diǎn)E,F(xiàn)分別在棱,上,且,(1)證明:點(diǎn)在平面BEF內(nèi);(2)若,,,求直線與平面BEF所成角的正弦值21.(12分)如圖,已知多面體,,,均垂直于平面,,,,(1)證明:平面;(2)求直線平面所成的角的正弦值22.(10分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知.(1)求B.(2)___________,若問(wèn)題中的三角形存在,試求出;若問(wèn)題中的三角形不存在,請(qǐng)說(shuō)明理由.在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在橫線上.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)可得結(jié)論.【詳解】故選:D.2、B【解析】利用事件獨(dú)立性的概率乘法公式及條件概率公式進(jìn)行求解.【詳解】因?yàn)槭录嗀,B相互獨(dú)立,所以,所以故選:B3、C【解析】對(duì)于A,作商比較,對(duì)于B,利用基本不等式的推廣式判斷,對(duì)于C,利用在單位圓中,內(nèi)接正邊形的面積小于內(nèi)接正邊形的面積判斷,對(duì)于D,利用放縮法判斷【詳解】,故錯(cuò)誤;,故錯(cuò)誤;在單位圓中,內(nèi)接正邊形的面積小于內(nèi)接正邊形的面積(必修三閱讀材料割圓術(shù)),則,故正確;,故錯(cuò)誤故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查不等式的綜合應(yīng)用,考查基本不等式的推廣式的應(yīng)用,考查放縮法的應(yīng)用,對(duì)于C項(xiàng)解題的關(guān)鍵是利用了在單位圓中,內(nèi)接正邊形的面積小于內(nèi)接正邊形的面積求解,考查數(shù)學(xué)轉(zhuǎn)化思想,屬于難題4、B【解析】根據(jù)平面向量共線的性質(zhì),結(jié)合拋物線的定義進(jìn)行求解即可.【詳解】由已知得:,該拋物線的準(zhǔn)線方程為:,所以設(shè),因?yàn)?,所以,由拋物線的定義可知:,故選:B5、C【解析】先求出方程表示雙曲線時(shí)滿足的條件,然后根據(jù)“小推大”原則進(jìn)行判斷即可.【詳解】因?yàn)榉匠虨殡p曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.6、B【解析】根據(jù)是等腰三角形且為銳角三角形,得到,即,解得離心率范圍.【詳解】,當(dāng)時(shí),,,不妨取,,是等腰三角形且為銳角三角形,則,即,,即,,解得,故.故選:B.7、D【解析】根據(jù)雙曲線的定義知,,即可求解.【詳解】由題意,雙曲線,可得焦點(diǎn)坐標(biāo),根據(jù)雙曲線的定義知,,而,所以或故選:D【點(diǎn)睛】本題主要考查了雙曲線的定義及其應(yīng)用,其中解答中熟記雙曲線的定義,列出方程是解答的關(guān)鍵,著重考查推理與運(yùn)算能力,屬于基礎(chǔ)題.8、A【解析】根據(jù)題意可求出正方體的上底面與球相交所得截面圓的半徑為4cm,再根據(jù)截面圓半徑,球的半徑以及球心距的關(guān)系,即可求出球的半徑,從而得到球的體積【詳解】設(shè)球的半徑為cm,根據(jù)已知條件知,正方體的上底面與球相交所得截面圓的半徑為4cm,球心到截面圓的距離為cm,所以由,得,所以球的體積為故選:A【點(diǎn)睛】本題主要考查球的體積公式的應(yīng)用,以及球的結(jié)構(gòu)特征的應(yīng)用,屬于基礎(chǔ)題9、B【解析】由題意結(jié)合成等比數(shù)列,有即可得,進(jìn)而得到、,即可求.【詳解】由題意知:,,又成等比數(shù)列,∴,解之得,∴,則,∴,故選:B【點(diǎn)睛】思路點(diǎn)睛:由其中三項(xiàng)成等比數(shù)列,利用等比中項(xiàng)性質(zhì)求項(xiàng),進(jìn)而得到等差數(shù)列的基本量1、由成等比,即;2、等差數(shù)列前n項(xiàng)和公式的應(yīng)用.10、B【解析】設(shè)出雙曲線方程,把雙曲線上的點(diǎn)的坐標(biāo)表示出來(lái)并代入到方程中,找到的關(guān)系即可求解.【詳解】以O(shè)為原點(diǎn),AD所在直線為x軸建系,不妨設(shè),則該雙曲線過(guò)點(diǎn)且,將點(diǎn)代入方程,故離心率為,故選:B【點(diǎn)睛】本題考查已知點(diǎn)在雙曲線上求雙曲線離心率的方法,屬于基礎(chǔ)題目11、D【解析】不是第一名且不是最后一名,的限制最多,先排有4種情況,再排,也有4種情況,余下的問(wèn)題是4個(gè)元素在4個(gè)位置全排列,根據(jù)分步計(jì)數(shù)原理求解即可【詳解】由題意,不是第一名且不是最后一名,的限制最多,故先排,有4種情況,再排,也有4種情況,余下4人有種情況,利用分步相乘計(jì)數(shù)原理知有種情況故選:D.12、B【解析】構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷AB選項(xiàng);構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷CD選項(xiàng).【詳解】對(duì)于AB選項(xiàng),構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,因?yàn)椤⑶?,則,即,A錯(cuò)B對(duì);對(duì)于CD選項(xiàng),構(gòu)造函數(shù),其中,則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,故函數(shù)在上不單調(diào),無(wú)法確定與的大小關(guān)系,故CD都錯(cuò).故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可得,化簡(jiǎn)整理得到,進(jìn)而可求出結(jié)果.【詳解】因?yàn)殡p曲線的一個(gè)焦點(diǎn)到其一條漸近線為,所有由題意可得,即,則,所以離心率,故答案為:.14、【解析】利用已知條件求出p,設(shè)出P的坐標(biāo),然后求解的表達(dá)式,利用基本不等式即可得出結(jié)論【詳解】解:由題意可知:,設(shè)點(diǎn),P到直線的距離為d,則,所以,當(dāng)且僅當(dāng)x時(shí),的最小值為,此時(shí),故答案為:【點(diǎn)睛】本題考查拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,基本不等式的應(yīng)用,屬于中檔題15、【解析】利用幾何概型的面積型概率計(jì)算,作出邊長(zhǎng)為24的正方形面積,求出部分的面積,即可求得答案.【詳解】設(shè)甲乙兩艘輪船到達(dá)的時(shí)間分為,則,記事件為兩船中有一艘在停靠泊位時(shí)、另一艘船必須等待,則,即∴.故答案為:.【點(diǎn)睛】本題考查幾何概型,考查轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意對(duì)概率模型的抽象成面積型.16、【解析】由題意知等差數(shù)列的通項(xiàng)公式,即可求出首項(xiàng),再利用等差數(shù)列求和公式即可得到答案.【詳解】已知等差數(shù)列的通項(xiàng)公式為,..故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過(guò)點(diǎn)列出方程組,求出,求出橢圓方程;(2)假設(shè)存在,分切線斜率存在和不存在分類討論,根據(jù)向量數(shù)量積為0求出r的值,表達(dá)出△AOB的面積,利用基本不等式求出的取值范圍,進(jìn)而求出△AOB面積的取值范圍.【小問(wèn)1詳解】因?yàn)闄E圓C:的離心率,且過(guò)點(diǎn)所以解得所以橢圓C的方程為【小問(wèn)2詳解】假設(shè)存在⊙O:滿足題意,①切線方程l的斜率存在時(shí),設(shè)切線方程l:y=kx+m與橢圓方程聯(lián)立,消去y得,(*)設(shè),,由題意知,(*)有兩解所以,即由根與系數(shù)的關(guān)系可得,所以因?yàn)?,所以,即化?jiǎn)得,且,O到直線l的距離所以,又,此時(shí),所以滿足題意所以存在圓的方程為⊙O:△AOB的面積,又因?yàn)楫?dāng)k≠0時(shí)當(dāng)且僅當(dāng)即時(shí)取等號(hào)又因?yàn)?,所以,所以?dāng)k=0時(shí),②斜率不存在時(shí),直線與橢圓交于兩點(diǎn)或兩點(diǎn)易知存在圓的方程為⊙O:且綜上,所以【點(diǎn)睛】求解圓錐曲線相關(guān)的三角形或四邊形面積取值范圍問(wèn)題,需要先設(shè)出變量,表達(dá)出面積,利用基本不等式或者配方,導(dǎo)函數(shù)等求出最值,求出取值范圍,特別注意直線斜率存在和不存在的情況,需要分類討論.18、(1)證明見(jiàn)解析;(2).【解析】(1)設(shè),首先證明,從而可得到,即得到;進(jìn)而可得到四邊形為平行四邊形;再根據(jù)為的中點(diǎn),即可證明直線必過(guò)坐標(biāo)原點(diǎn)(2)設(shè)出直線的方程,與橢圓方程聯(lián)立,消元,寫(xiě)韋達(dá);根據(jù)條件可求出直線MN過(guò)定點(diǎn),從而可得到過(guò)定點(diǎn),進(jìn)而可得到點(diǎn)在以為直徑的圓上運(yùn)動(dòng),從而可求出動(dòng)點(diǎn)的軌跡方程【小問(wèn)1詳解】設(shè),則,即因?yàn)椋?,所以因?yàn)?,所以,所?同理可證.因?yàn)?,,所以四邊形為平行四邊形,因?yàn)闉榈闹悬c(diǎn),所以直線必過(guò)坐標(biāo)原點(diǎn)【小問(wèn)2詳解】當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,,聯(lián)立,整理得,則,,.因?yàn)?,所以,因?yàn)?,解得?當(dāng)時(shí),直線的方程為過(guò)點(diǎn)A,不滿足題意,所以舍去;所以直線的方程為,所以直線過(guò)定點(diǎn).當(dāng)直線的斜率不存在時(shí),因?yàn)椋灾本€的方程為,經(jīng)驗(yàn)證,符合題意.故直線過(guò)定點(diǎn).因?yàn)闉榈闹悬c(diǎn),為的中點(diǎn),所以過(guò)定點(diǎn).因?yàn)榇怪逼椒止蚕?,所以點(diǎn)在以為直徑的圓上運(yùn)動(dòng),該圓的半徑,圓心坐標(biāo)為,故動(dòng)點(diǎn)的軌跡方程為19、(1)(2)【解析】(1)根據(jù)橢圓的離心率為,及經(jīng)過(guò)點(diǎn)建立等式可求解;(2)分斜率存在與不存在兩種情況進(jìn)行討論,當(dāng)斜率存在時(shí),計(jì)算與后再求范圍即可.【小問(wèn)1詳解】由題意知的離心率為,整理得,又因?yàn)榻?jīng)過(guò)點(diǎn),所以,解得,所以,因此,的方程為.小問(wèn)2詳解】由已知可得,當(dāng)直線AB或DE有一條的斜率不存在時(shí),可得,或,,此時(shí)有或.當(dāng)AB和DE的斜率都存在時(shí)且不為0時(shí),設(shè)直線:,直線:,,,,由得,所以,,所以,用替換可得.所以,綜上所述,的取值范圍為.20、(1)證明見(jiàn)解析;(2).【解析】(1)設(shè)、、、AC與BD的交點(diǎn)為O,由直四棱柱的性質(zhì)構(gòu)建空間直角坐標(biāo)系,確定、的坐標(biāo)可得,即可證結(jié)論.(2)由題設(shè),求出、、的坐標(biāo),進(jìn)而求得面BEF的法向量,利用空間向量夾角的坐標(biāo)表示求直線與平面BEF所成角的正弦值【小問(wèn)1詳解】由題意,,設(shè),,,設(shè)AC與BD的交點(diǎn)為O,以O(shè)為坐標(biāo)原點(diǎn),分別以BD,AC所在直線為x,y軸建立如下空間直角坐標(biāo)系,則,,,,所以,,得,即,因此點(diǎn)在平面BEF內(nèi)【小問(wèn)2詳解】由(1)及題設(shè),,,,,所以,,設(shè)為平面BEF的法向量,則,令,即設(shè)直線與平面BEF所成角為,則21、(1)證明見(jiàn)解析;(2)【解析】(1)由已知條件可得,,則,,再利用線面垂直的判定定理可證得結(jié)論;(2)如圖,過(guò)點(diǎn)作,交直線于點(diǎn),連接,可證得平面,從而是與平面所成的角,然后在求解即可【詳解】(1)證明:由,,,,得,所以,由由,,,,得,由,得,由,得,所以,故,又,因此平面(2)解如圖,過(guò)點(diǎn)作,交直線于點(diǎn),連接由平面,平面,得平面平面,由,得平面,所以是與平面所成的角由,,得,,所以,故因此,直線與平面所成的角的正弦值是【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查線面垂直的判定和線面角的求法,解題的關(guān)鍵是通過(guò)過(guò)點(diǎn)作,交直線于點(diǎn),
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年供應(yīng)鏈金融風(fēng)險(xiǎn)識(shí)別防控課
- 2026年農(nóng)村人居環(huán)境長(zhǎng)效管護(hù)機(jī)制
- 2026湖北黃岡市武穴市公務(wù)員招聘78人備考題庫(kù)及1套參考答案詳解
- 機(jī)器人運(yùn)動(dòng)控制算法開(kāi)發(fā)與驗(yàn)證手冊(cè)
- 2026遼寧大連產(chǎn)業(yè)園社招招聘?jìng)淇碱}庫(kù)有完整答案詳解
- 2026年景區(qū)智慧導(dǎo)覽系統(tǒng)應(yīng)用培訓(xùn)
- 金融工程更全面的創(chuàng)業(yè)板投資標(biāo)尺-創(chuàng)業(yè)板綜合指數(shù)投資價(jià)值分析
- 杭氧股份空分設(shè)備構(gòu)筑基本盤(pán)工業(yè)氣體業(yè)務(wù)成新增長(zhǎng)曲線
- 財(cái)政局綜合股培訓(xùn)課件
- 職業(yè)噪聲與心血管疾病個(gè)體化防護(hù)策略-2
- 2025年湖南省中考數(shù)學(xué)真題試卷及答案解析
- 學(xué)前教育論文格式模板
- DB32/T 3518-2019西蘭花速凍技術(shù)規(guī)程
- 架空輸電線路建設(shè)關(guān)鍵環(huán)節(jié)的質(zhì)量控制與驗(yàn)收標(biāo)準(zhǔn)
- 裝修敲打搬運(yùn)合同協(xié)議書(shū)
- 《世界經(jīng)濟(jì)史學(xué)》課件
- 重生之我在古代當(dāng)皇帝-高二上學(xué)期自律主題班會(huì)課件
- 膀胱切開(kāi)取石術(shù)護(hù)理查房
- GB/T 45355-2025無(wú)壓埋地排污、排水用聚乙烯(PE)管道系統(tǒng)
- 四川省綿陽(yáng)市2024屆中考數(shù)學(xué)試卷(含答案)
- 2024-2025學(xué)年人教版初中地理七年級(jí)下冊(cè)課件 第7章 第1節(jié) 自然環(huán)境
評(píng)論
0/150
提交評(píng)論