2026屆云南省瀘水市第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2026屆云南省瀘水市第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2026屆云南省瀘水市第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2026屆云南省瀘水市第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2026屆云南省瀘水市第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆云南省瀘水市第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標(biāo)系中,點關(guān)于軸對稱的點的坐標(biāo)為()A. B.C. D.2.若命題p為真命題,命題q為假命題,則下列命題為真命題的是()A. B.C. D.3.總體由編號為的30個個體組成.利用所給的隨機數(shù)表選取6個個體,選取的方法是從隨機數(shù)表第1行的第3列和第4列數(shù)字開始,由左到右一次選取兩個數(shù)字,則選出來的第5個個體的編號為()A.20 B.26C.17 D.034.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分又不必要條件5.在等差數(shù)列中,為其前項和,若.則()A. B.C. D.6.正四棱錐中,,則直線與平面所成角的正弦值為A. B.C. D.7.已知等比數(shù)列的前項和為,若,,則()A.20 B.30C.40 D.508.某救援隊有5名隊員,其中有1名隊長,1名副隊長,在一次救援中需隨機分成兩個行動小組,其中一組2名隊員,另一組3名隊員,則正、副隊長不在同一組的概率為()A. B.C. D.9.將上各點的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到曲線C,若直線l與曲線C交于A,B兩點,且AB中點坐標(biāo)為M(1,),那么直線l的方程為()A. B.C. D.10.某口罩生產(chǎn)商為了檢驗產(chǎn)品質(zhì)量,從總體編號為001,002,003,…,499,500的500盒口罩中,利用下面的隨機數(shù)表選取10個樣本進行抽檢,選取方法是從下面的隨機數(shù)表第1行第5列的數(shù)字開始由左向右讀取,則選出的第3個樣本的編號為()160011661490844511657388059052274114862298122208075274958035696832506128473975345862A.148 B.116C.222 D.32511.曲線上的點到直線的最短距離是()A. B.C. D.112.已知函數(shù)在區(qū)間上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.知函數(shù),若函數(shù)有兩個不同的零點,則實數(shù)的取值范圍為_____________.14.復(fù)數(shù)的共軛復(fù)數(shù)是__________15.等差數(shù)列中,若,,則______,數(shù)列的前n項和為,則______16.將集合且中所有的元素從小到大排列得到的數(shù)列記為,則___________(填數(shù)值).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面為正方形,底面,設(shè)平面與平面的交線為.(1)證明:;(2)已知,為直線上的點,求與平面所成角的正弦值的最大值.18.(12分)設(shè)函數(shù)(Ⅰ)求的單調(diào)區(qū)間;(Ⅱ)若,為整數(shù),且當(dāng)時,恒成立,求的最大值.(其中為的導(dǎo)函數(shù).)19.(12分)已知三角形的內(nèi)角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.20.(12分)如圖①,等腰梯形中,,分別為的中點,,現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中:(1)證明:平面平面;(2)求四棱錐的體積.21.(12分)某話劇表演小組由名學(xué)生組成,若從這名學(xué)生中任意選取人,其中恰有名男生的概率是.(1)求該小組中男、女生各有多少人?(2)若這名學(xué)生站成一排照相留念,求所有排法中男生不相鄰的概率.22.(10分)已知函數(shù)的導(dǎo)函數(shù)為,且滿足(1)求及的值;(2)求在點處的切線方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】結(jié)合已知條件,利用對稱的概念即可求解.【詳解】不妨設(shè)點關(guān)于軸對稱的點的坐標(biāo)為,則線段垂直于軸且的中點在軸,從而點關(guān)于軸對稱的點的坐標(biāo)為.故選:B.2、B【解析】根據(jù)邏輯聯(lián)結(jié)詞“且”,一假則假,對四個選項一一判斷直接即可判斷.【詳解】邏輯聯(lián)結(jié)詞“且”,一假則假.因為命題p為真命題,命題q為假命題,所以為假命題,為真命題.所以,為假,故A錯誤;為真,故B正確;為假,故C錯誤;為假,故D錯誤.故選:B3、D【解析】根據(jù)題目要求選取數(shù)字,在30以內(nèi)的正整數(shù)符合要求,不在30以內(nèi)的不合要求,舍去,與已經(jīng)選取過重復(fù)的舍去,找到第5個個體的編號.【詳解】已知選取方法為從第一行的第3列和第4列數(shù)字開始,由左到右一次選取兩個數(shù)字,所以選取出來的數(shù)字分別為12(符合要求),13(符合要求),40(不合要求),33(不合要求),20(符合要求),38(不合要求),26(符合要求),13(與前面重復(fù),不合要求),89(不合要求),51(不合要求),03(符合要求),故選出來的第5個個體的編號為03.故選:D4、B【解析】根據(jù)充分條件和必要條件的定義判斷即可求解.【詳解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分條件,故選:B.5、C【解析】利用等差數(shù)列的性質(zhì)和求和公式可求得的值.【詳解】由等差數(shù)列的性質(zhì)和求和公式可得.故選:C.6、C【解析】建立合適的空間直角坐標(biāo)系,求出和平面的法向量,直線與平面所成角的正弦值即為與的夾角的余弦值的絕對值,利用夾角公式求出即可.【詳解】建立如圖所示的空間直角坐標(biāo)系.有圖知,由題得、、、.,,.設(shè)平面的一個法向量,則,,令,得,,.設(shè)直線與平面所成的角為,則.故選:C.【點睛】本題考查線面角的求解,利用向量法可簡化分析過程,直接用計算的方式解決問題,是基礎(chǔ)題.7、B【解析】根據(jù)等比數(shù)列前項和的性質(zhì)進行求解即可.【詳解】因為是等比數(shù)列,所以成等比數(shù)列,即成等比數(shù)列,顯然,故選:B8、C【解析】求出基本事件總數(shù)與正、副隊長不在同一組的基本事件個數(shù),即可求出答案.【詳解】基本事件總數(shù)為正、副隊長不在同一組的基本事件個數(shù)為故正、副隊長不在同一組的概率為.故選:C.9、A【解析】先根據(jù)題意求出曲線C的方程,然后利用點差法求出直線l的斜率,從而可求出直線方程【詳解】設(shè)點為曲線C上任一點,其在上對應(yīng)在的點為,則,得,所以,所以曲線C的方程為,設(shè),則,兩方程相減整理得,因為AB中點坐標(biāo)為M(1,),所以,即,所以,所以,所以直線l的方程為,即,故選:A10、A【解析】按隨機數(shù)表法逐個讀取數(shù)字即可得到答案.【詳解】根據(jù)隨機數(shù)表法讀取的數(shù)字分別為:116,614(舍),908(舍),445,116(舍),573(舍),880(舍),590(舍),522(舍),741(舍),148,故選出的第3個樣本的編號為148.故選:A.11、B【解析】先求與平行且與相切的切線切點,再根據(jù)點到直線距離公式得結(jié)果.【詳解】設(shè)與平行的直線與相切,則切線斜率k=1,∵∴,由,得當(dāng)時,即切點坐標(biāo)為P(1,0),則點(1,0)到直線的距離就是線上的點到直線的最短距離,∴點(1,0)到直線的距離為:,∴曲線上的點到直線l:的距離的最小值為.故選:B12、D【解析】由在上恒成立,再轉(zhuǎn)化為求函數(shù)的取值范圍可得【詳解】由已知,在上是增函數(shù),則在上恒成立,即,,當(dāng)時,,所以故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)分段函數(shù)的性質(zhì),結(jié)合冪函數(shù)、一次函數(shù)的單調(diào)性判斷零點的分布,進而求m的范圍.【詳解】由解析式知:在上為增函數(shù)且,在上,時為單調(diào)函數(shù),時無零點,故要使有兩個不同的零點,即兩側(cè)各有一個零點,所以在上必遞減且,則,可得.故答案為:14、【解析】利用復(fù)數(shù)除法化簡,由共軛復(fù)數(shù)的概念寫出即可.【詳解】,∴.故答案為:15、①.②.【解析】設(shè)等差數(shù)列公差為d,根據(jù)等差數(shù)列的性質(zhì)即可求通項公式;,采用裂項相消的方法求.【詳解】設(shè)等差數(shù)列公差為d,,,;∵,∴.故答案為:;.16、992【解析】列舉數(shù)列的前幾項,觀察特征,可得出.詳解】由題意得觀察規(guī)律可得中,以為被減數(shù)的項共有個,因為,所以是中的第5項,所以.故答案為:992.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由可證得平面,根據(jù)線面平行的性質(zhì)可證得結(jié)論;(2)以為坐標(biāo)原點建立空間直角坐標(biāo)系,設(shè),利用線面角的向量求法可表示出,分別在、和三種情況下,結(jié)合基本不等式求得所求最大值.【小問1詳解】四邊形為正方形,,又平面,平面,平面,又平面,平面平面,.【小問2詳解】以為坐標(biāo)原點,為軸可建立如圖所示空間直角坐標(biāo)系,則,,,,由(1)知:,則可設(shè),,,,設(shè)平面的法向量,則,令,則,,,設(shè)直線與平面所成角為,;當(dāng)時,;當(dāng)時,(當(dāng)且僅當(dāng),即時取等號);當(dāng)時,;綜上所述:直線與平面所成角正弦值的最大值為.18、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)的定義域為,,分和兩種情況解不等式和即可得單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可得對于恒成立,分離可得,令,只需,利用導(dǎo)數(shù)求最小值即可求解.【詳解】(Ⅰ)函數(shù)的定義域為,當(dāng)時,對于恒成立,此時函數(shù)在上單調(diào)遞增;當(dāng)時,由可得;由可得;此時在上單調(diào)遞減,在上單調(diào)遞增;綜上所述:當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為,當(dāng)時,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(Ⅱ)若,由可得,因為,所以,所以所以對于恒成立,令,則,,令,則對于恒成立,所以在單調(diào)遞增,因為,,所以在上存在唯一零點,即,可得:,當(dāng)時,,則,當(dāng)時,,則,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因為,所以的最大值為.【點睛】方法點睛:利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的方法:(1)確定函數(shù)的定義域;求導(dǎo)函數(shù),由(或)解出相應(yīng)的的范圍,對應(yīng)的區(qū)間為的增區(qū)間(或減區(qū)間);(2)確定函數(shù)的定義域;求導(dǎo)函數(shù),解方程,利用的根將函數(shù)的定義域分為若干個子區(qū)間,在這些子區(qū)間上討論的正負,由符號確定在子區(qū)間上的單調(diào)性.19、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關(guān)系結(jié)合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進一步求得面積【小問1詳解】因為,由正弦定理得因,所以.因為角為鈍角,所以角為銳角,所以【小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=20、(1)證明見解析.(2)2【解析】(1)根據(jù)面面平行的判定定理結(jié)合已知條件即可證明;(2)將所求四棱錐的體積轉(zhuǎn)化為求即可.【小問1詳解】證明:因為,面,面,所以面,同理面,又因為面,所以面面.【小問2詳解】解:因為在圖①等腰梯形中,分別為的中點,所以,在圖②多面體中,因為,面,,所以面.因為,面面,面,面面,所以面,又因為面,所以,在直角三角形中,因為,所以,同理,,所以,則,有,所以.所以四棱錐的體積為2.21、(1)男生人數(shù)為,女生人數(shù)為;(2).【解析】(1)設(shè)男生的人數(shù)為,則女生人數(shù)為,且,根據(jù)組合計數(shù)原理結(jié)合古典概型的概率公式可求得的值,即可得解;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論