2026屆葫蘆島市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第1頁
2026屆葫蘆島市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第2頁
2026屆葫蘆島市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第3頁
2026屆葫蘆島市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第4頁
2026屆葫蘆島市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆葫蘆島市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若在直線上,則直線的一個(gè)方向向量為()A. B.C. D.2.已知過點(diǎn)的直線l與圓相交于A,B兩點(diǎn),則的取值范圍是()A. B.C. D.3.在中,,,,則此三角形()A.無解 B.一解C.兩解 D.解的個(gè)數(shù)不確定4.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則的最小值為()A. B.C. D.5.《周髀算經(jīng)》中有這樣一個(gè)問題,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣日影長依次成等差數(shù)列,若冬至、大寒、雨水的日影長的和為36.3尺,小寒、驚蟄、立夏的日影長的和為18.3尺,則冬至的日影長為()A4尺 B.8.5尺C.16.1尺 D.18.1尺6.下圖稱為弦圖,是我國古代三國時(shí)期趙爽為《周髀算經(jīng)》作注時(shí)為證明勾股定理所繪制,我們新教材中利用該圖作為“()”的幾何解釋A.如果,,那么B.如果,那么C.對(duì)任意實(shí)數(shù)和,有,當(dāng)且僅當(dāng)時(shí)等號(hào)成立D.如果,那么7.函數(shù)的圖象大致為()A. B.C. D.8.已知是公差為3的等差數(shù)列.若,,成等比數(shù)列,則的前10項(xiàng)和()A.165 B.138C.60 D.309.“”是“圓與軸相切”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.已知點(diǎn)是雙曲線的左、右焦點(diǎn),以線段為直徑的圓與雙曲線在第一象限的交點(diǎn)為,若,則()A.與雙曲線的實(shí)軸長相等B.的面積為C.雙曲線的離心率為D.直線是雙曲線的一條漸近線11.已知實(shí)數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或12.命題“,”的否定是()A., B.,C, D.,二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)等差數(shù)列,前項(xiàng)和分別為,,若對(duì)任意自然數(shù)都有,則的值為______.14.已知向量與是平面的兩個(gè)法向量,則__________15.已知球的半徑為4,圓與圓為該球的兩個(gè)小圓,為圓與圓的公共弦,,若,則兩圓圓心的距離___________16.已知球的表面積是,則該球的體積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)圖像在點(diǎn)處的切線方程為.(1)求實(shí)數(shù)、的值;(2)求函數(shù)在上的最值.18.(12分)已知O為坐標(biāo)原點(diǎn),雙曲線C:(,)的離心率為,點(diǎn)P在雙曲線C上,點(diǎn),分別為雙曲線C的左右焦點(diǎn),.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)已知點(diǎn),,設(shè)直線PA,PB的斜率分別為,.證明:為定值.19.(12分)設(shè)等差數(shù)列的各項(xiàng)均為整數(shù),且滿足對(duì)任意正整數(shù),總存在正整數(shù),使得,則稱這樣的數(shù)列具有性質(zhì)(1)若數(shù)列的通項(xiàng)公式為,數(shù)列是否具有性質(zhì)?并說明理由;(2)若,求出具有性質(zhì)的數(shù)列公差的所有可能值;(3)對(duì)于給定的,具有性質(zhì)的數(shù)列是有限個(gè),還是可以無窮多個(gè)?(直接寫出結(jié)論)20.(12分)已知拋物線C的方程是.(1)求C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;(2)直線l過拋物線C的焦點(diǎn)且傾斜角為,與拋物線C的交點(diǎn)為A,B,求的長度.21.(12分)在棱長為4的正方體中,點(diǎn)分別在線段上,點(diǎn)在線段延長線上,,,連接交線段于點(diǎn).(1)求證平面;(2)求異面直線所成角的余弦值.22.(10分)已知函數(shù).(1)當(dāng)時(shí),證明:存在唯一的零點(diǎn);(2)若,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由題意可得首先求出直線上的一個(gè)向量,即可得到它的一個(gè)方向向量,再利用平面向量共線(平行)的坐標(biāo)表示即可得出答案【詳解】∵在直線上,∴直線的一個(gè)方向向量,又∵,∴是直線的一個(gè)方向向量故選:D2、D【解析】經(jīng)判斷點(diǎn)在圓內(nèi),與半徑相連,所以與垂直時(shí)弦長最短,最長為直徑【詳解】將代入圓方程得:,所以點(diǎn)在圓內(nèi),連接,當(dāng)時(shí),弦長最短,,所以弦長,當(dāng)過圓心時(shí),最長等于直徑8,所以的取值范圍是故選:D3、C【解析】利用正弦定理求出的值,再根據(jù)所求值及a與b的大小關(guān)系即可判斷作答.【詳解】在中,,,,由正弦定理得,而為銳角,且,則或,所以有兩解故選:C4、B【解析】設(shè)等比數(shù)列的公比為,則,由可得,可得出,利用基本不等式可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,則,因?yàn)?,則,所以,,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故選:B.5、C【解析】設(shè)等差數(shù)列,用基本量代換列方程組,即可求解.【詳解】由題意,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣的日影長依次成等差數(shù)列,記為數(shù)列,公差為d,則有,即,解得:,即冬至的日影長為16.1尺.故選:C6、C【解析】設(shè)圖中直角三角形邊長分別為a,b,則斜邊為,則可表示出陰影面積和正方形面積,根據(jù)圖象關(guān)系,可得即可得答案.【詳解】設(shè)圖中全等的直角三角形的邊長分別為a,b,則斜邊為,如圖所示:則四個(gè)直角三角形的面積為,正方形的面積為,由圖象可得,四個(gè)直角三角形面積之和小于等于正方形的面積,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以對(duì)任意實(shí)數(shù)和,有,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故選:C7、A【解析】由題意首先確定函數(shù)的奇偶性,然后考查函數(shù)在特殊點(diǎn)的函數(shù)值排除錯(cuò)誤選項(xiàng)即可確定函數(shù)的圖象.【詳解】由函數(shù)的解析式可得:,則函數(shù)為奇函數(shù),其圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,選項(xiàng)CD錯(cuò)誤;當(dāng)時(shí),,選項(xiàng)B錯(cuò)誤.故選:A.【點(diǎn)睛】函數(shù)圖象的識(shí)辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對(duì)稱性.(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.利用上述方法排除、篩選選項(xiàng)8、A【解析】由等差數(shù)列的定義與等比數(shù)列的性質(zhì)求得首項(xiàng),然后由等差數(shù)列的前項(xiàng)和公式計(jì)算【詳解】因?yàn)?,,成等比?shù)列,所以,所以,解得,所以故選:A9、A【解析】根據(jù)充分不必要條件的定義和圓心到軸的距離求出可得答案.【詳解】時(shí),圓的圓心坐標(biāo)為,半徑為2,此時(shí)圓與軸相切;當(dāng)圓與軸相切時(shí),因?yàn)閳A的半徑為2,所以圓心到軸的距離為,所以,“”是“圓與軸相切”的充分不必要條件故選:A10、B【解析】由題意及雙曲線的定義可得,的值,進(jìn)而可得A不正確,計(jì)算可判斷B正確,再求出,的關(guān)系可得C不正確,求出,的關(guān)系,進(jìn)而求出漸近線的方程,可得D不正確【詳解】因?yàn)?,又由題意及雙曲線的定義可得:,則,,所以A不正確;因?yàn)樵谝詾橹睆降膱A上,所以,所以,所以B正確;在△中,由勾股定理可得,即,所以離心率,所以C不正確;由C的分析可知:,故,所以漸近線的方程為,即,所以D不正確;故選:B11、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計(jì)算公式即可求得結(jié)果.【詳解】因?yàn)閷?shí)數(shù)成等比數(shù)列,故可得,解得或;當(dāng)時(shí),表示焦點(diǎn)在軸上的橢圓,此時(shí);當(dāng)時(shí),表示焦點(diǎn)在軸上的雙曲線,此時(shí).故選:C.12、D【解析】由含量詞命題否定的定義,寫出命題的否定即可【詳解】命題“,”的否定是:,,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由等差數(shù)列的性質(zhì)可得:.再利用已知即可得出【詳解】由等差數(shù)列的性質(zhì)可得:對(duì)于任意的都有,則故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),求和公式,考查了推理能力與計(jì)算能力,屬于中檔題14、【解析】由且為非零向量可直接構(gòu)造方程求得,進(jìn)而得到結(jié)果.【詳解】由題意知:,,解得:(舍)或,.故答案為:.15、【解析】欲求兩圓圓心的距離,將它放在與球心組成的三角形中,只要求出球心角即可,通過球的性質(zhì)構(gòu)成的直角三角形即可解得【詳解】∵,球半徑為4,∴小圓的半徑為,∵小圓中弦長,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案為:.16、【解析】設(shè)球的半徑為r,代入表面積公式,可解得,代入體積公式,即可得答案.【詳解】設(shè)球的半徑為r,則表面積,解得,所以體積,故答案為:【點(diǎn)睛】本題考查已知球的表面積求體積,關(guān)鍵是求出半徑,再進(jìn)行求解,考查基礎(chǔ)知識(shí)掌握程度,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)a=3,b=-9.(2)最小值=-24,最大值=8.【解析】由曲線在的值以及切線斜率容易確定a與b的值;根據(jù)導(dǎo)數(shù)很容易確定函數(shù)單調(diào)區(qū)間以及極值點(diǎn).【小問1詳解】,,,由于切線方程是,當(dāng)x=1時(shí),y=-8,即,即=-8……①;又切線的斜率為-12,∴……②;聯(lián)立①②得.【小問2詳解】由(1)得:,;當(dāng)時(shí),,導(dǎo)函數(shù)圖像如下:在時(shí),單調(diào)遞增,時(shí),單調(diào)遞減,時(shí)單調(diào)遞增;∴在x=-1有極大值,x=3有極小值;在區(qū)間內(nèi):在x=-1有最大值;在x=3有最小值.18、(1)(2)證明見解析【解析】(1)根據(jù)題意和雙曲線的定義求出,結(jié)合離心率求出b,即可得出雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè),根據(jù)兩點(diǎn)的坐標(biāo)即可求出、,化簡計(jì)算即可.【小問1詳解】由題知:由雙曲線的定義知:,又因?yàn)?,所以,所以所以,雙曲線C的標(biāo)準(zhǔn)方程為小問2詳解】設(shè),則因?yàn)?,,所以,所?9、(1)數(shù)列具有性質(zhì),理由見解析;(2),;(3)有限個(gè).【解析】(1)由題意,由性質(zhì)定義,即可知是否具有性質(zhì).(2)由題設(shè),存在,結(jié)合已知得且,則,由性質(zhì)的定義只需保證為整數(shù)即可確定公差的所有可能值;(3)根據(jù)(2)的思路,可得且,由為整數(shù),在為定值只需為整數(shù),即可判斷數(shù)列的個(gè)數(shù)是否有限.【小問1詳解】由,對(duì)任意正整數(shù),,說明仍為數(shù)列中的項(xiàng),∴數(shù)列具有性質(zhì).【小問2詳解】設(shè)的公差為.由條件知:,則,即,∴必有且,則,而此時(shí)對(duì)任意正整數(shù),,又必一奇一偶,即為非負(fù)整數(shù)因此,只要為整數(shù)且,那么為中的一項(xiàng).易知:可取,對(duì)應(yīng)得到個(gè)滿足條件的等差數(shù)列.【小問3詳解】同(2)知:,則,∴必有且,則,故任意給定,公差均為有限個(gè),∴具有性質(zhì)的數(shù)列是有限個(gè).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)性質(zhì)的定義,在第2、3問中判斷滿足等差數(shù)列通項(xiàng)公式,結(jié)合各項(xiàng)均為整數(shù),判斷公差的個(gè)數(shù)是否有限即可.20、(1)焦點(diǎn)為,準(zhǔn)線方程:(2)【解析】(1)拋物線的標(biāo)準(zhǔn)方程為,焦點(diǎn)在軸上,開口向右,,即可求出拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;(2)現(xiàn)根據(jù)題意給出直線的方程,代入拋物線,求出兩交點(diǎn)的橫坐標(biāo)的和,然后利用焦半徑公式求解即可【小問1詳解】(1)拋物線的標(biāo)準(zhǔn)方程是,焦點(diǎn)在軸上,開口向右,,∴,∴焦點(diǎn)為,準(zhǔn)線方程:.【小問2詳解】∵直線l過拋物線C的焦點(diǎn)且傾斜角為,,∴直線L的方程為,代入拋物線化簡得,設(shè),則,所以故所求的弦長為1221、(1)證明見解析(2)【解析】(1)由線面平行的判定定理證明;(2)建立空間直角坐標(biāo)系,用空間向量法求異面直線所成的角【小問1詳解】證明:且,由三角形相似可得,,,又,,又平面,平面平面;【小問2詳解】解:以為坐標(biāo)原點(diǎn),分別以為軸建立空間坐標(biāo)系,如圖.則設(shè)異面直線所成角為,則22、(1)證明見解析;(2)【解析】(1)當(dāng)時(shí),求導(dǎo)得到,判斷出函數(shù)的單調(diào)性,求出最值,可證得命題成立;(2)當(dāng)且時(shí),不滿足題意,故,又定義域?yàn)?,講不等式化簡,參變分離后構(gòu)造新函數(shù),求導(dǎo)判斷單調(diào)性并求出最值,可得實(shí)數(shù)的取值范圍【詳解】(1)函數(shù)的定義域?yàn)?,?dāng)時(shí),由,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;.且,故存在唯一的零點(diǎn);(2)當(dāng)時(shí),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論