版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧葫蘆島協(xié)作校2026屆數(shù)學(xué)高三上期末質(zhì)量檢測試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則()A. B. C. D.22.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.3.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.4.的二項(xiàng)展開式中,的系數(shù)是()A.70 B.-70 C.28 D.-285.已知展開式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,,若,則的值為()A.1 B.-1 C.8l D.-816.已知圓關(guān)于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.7.已知函數(shù),若,則的值等于()A. B. C. D.8.雙曲線的漸近線方程是()A. B. C. D.9.已知,若則實(shí)數(shù)的取值范圍是()A. B. C. D.10.已知不等式組表示的平面區(qū)域的面積為9,若點(diǎn),則的最大值為()A.3 B.6 C.9 D.1211.若函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對稱點(diǎn)在的圖象上,則的取值范圍是()A. B. C. D.12.天干地支,簡稱為干支,源自中國遠(yuǎn)古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀(jì)年法是天干和地支依次按固定的順序相互配合組成,以此往復(fù),60年為一個輪回.現(xiàn)從農(nóng)歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,且恒成立,則的值為____________.14.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克,原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗原料都不超過12千克.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是__________元.15.某班有學(xué)生52人,現(xiàn)將所有學(xué)生隨機(jī)編號,用系統(tǒng)抽樣方法,抽取一個容量為4的樣本,已知5號、31號、44號學(xué)生在樣本中,則樣本中還有一個學(xué)生的編號是__________.16.函數(shù)的定義域?yàn)開____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.18.(12分)在中,,是邊上一點(diǎn),且,.(1)求的長;(2)若的面積為14,求的長.19.(12分)在數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若存在,使得成立,求實(shí)數(shù)的最小值20.(12分)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.21.(12分)已知橢圓:,不與坐標(biāo)軸垂直的直線與橢圓交于,兩點(diǎn).(Ⅰ)若線段的中點(diǎn)坐標(biāo)為,求直線的方程;(Ⅱ)若直線過點(diǎn),點(diǎn)滿足(,分別為直線,的斜率),求的值.22.(10分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點(diǎn).為橢圓的右焦點(diǎn),為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),連接分別交橢圓于兩點(diǎn).⑴求橢圓的標(biāo)準(zhǔn)方程;⑵若,求的值;⑶設(shè)直線,的斜率分別為,,是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
結(jié)合求得的值,由此化簡所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得..故選:B【點(diǎn)睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡求值,考查二倍角公式,屬于中檔題.2、A【解析】
由的解集,可知及,進(jìn)而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因?yàn)?,所以的解集為,故選:A.【點(diǎn)睛】本題考查一元一次不等式、一元二次不等式的解集,考查學(xué)生的計算求解能力與推理能力,屬于基礎(chǔ)題.3、A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時,等號成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.4、A【解析】試題分析:由題意得,二項(xiàng)展開式的通項(xiàng)為,令,所以的系數(shù)是,故選A.考點(diǎn):二項(xiàng)式定理的應(yīng)用.5、B【解析】
根據(jù)二項(xiàng)式系數(shù)的性質(zhì),可求得,再通過賦值求得以及結(jié)果即可.【詳解】因?yàn)檎归_式中第三項(xiàng)的二項(xiàng)式系數(shù)與第四項(xiàng)的二項(xiàng)式系數(shù)相等,故可得,令,故可得,又因?yàn)?,令,則,解得令,則.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),以及通過賦值法求系數(shù)之和,屬綜合基礎(chǔ)題.6、C【解析】
將圓,化為標(biāo)準(zhǔn)方程為,求得圓心為.根據(jù)圓關(guān)于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標(biāo)準(zhǔn)方程為:,所以圓心為.因?yàn)殡p曲線,所以其漸近線方程為,又因?yàn)閳A關(guān)于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【點(diǎn)睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.7、B【解析】
由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【點(diǎn)睛】函數(shù)奇偶性的運(yùn)用即得結(jié)果,小記,定義域關(guān)于原點(diǎn)對稱時有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)8、C【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點(diǎn)睛】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意雙曲線的簡單性質(zhì)的合理運(yùn)用.9、C【解析】
根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因?yàn)?,所以有解,即有解,所以,得,,所以,又因?yàn)?,所以,即,可化為,因?yàn)椋缘慕饧?,所以或,解得,故選:C【點(diǎn)睛】本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題,10、C【解析】
分析:先畫出滿足約束條件對應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點(diǎn),即求出邊界線的交點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時,由圖可得當(dāng)過點(diǎn)時,取得最大值9,故選C.點(diǎn)睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.11、D【解析】
由題可知,可轉(zhuǎn)化為曲線與有兩個公共點(diǎn),可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對稱點(diǎn)在上,即曲線與有兩個公共點(diǎn),即方程有兩解,即有兩解,令,則,則當(dāng)時,;當(dāng)時,,故時取得極大值,也即為最大值,當(dāng)時,;當(dāng)時,,所以滿足條件.故選:D【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.12、B【解析】
利用古典概型概率計算方法分析出符合題意的基本事件個數(shù),結(jié)合組合數(shù)的計算即可出求得概率.【詳解】20個年份中天干相同的有10組(每組2個),地支相同的年份有8組(每組2個),從這20個年份中任取2個年份,則這2個年份的天干或地支相同的概率.故選:B.【點(diǎn)睛】本小題主要考查古典概型的計算,考查組合數(shù)的計算,考查學(xué)生分析問題的能力,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
易得,所以是等差數(shù)列,再利用等差數(shù)列的通項(xiàng)公式計算即可.【詳解】由已知,,因,所以,所以數(shù)列是以為首項(xiàng),3為公差的等差數(shù)列,故,所以.故答案為:【點(diǎn)睛】本題考查由遞推數(shù)列求數(shù)列中的某項(xiàng),考查學(xué)生等價轉(zhuǎn)化的能力,是一道容易題.14、1元【解析】設(shè)分別生產(chǎn)甲乙兩種產(chǎn)品為桶,桶,利潤為元
則根據(jù)題意可得目標(biāo)函數(shù),作出可行域,如圖所示作直線然后把直線向可行域平移,
由圖象知當(dāng)直線經(jīng)過時,目標(biāo)函數(shù)的截距最大,此時最大,
由可得,即此時最大,
即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤,最大利潤為1.【點(diǎn)睛】本題考查用線性規(guī)劃知識求利潤的最大值,根據(jù)條件建立不等式關(guān)系,以及利用線性規(guī)劃的知識進(jìn)行求解是解決本題的關(guān)鍵.15、18【解析】
根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,故可根據(jù)其中三個個體的編號求出另一個個體的編號.【詳解】解:根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,已知其中三個個體的編號為5,31,44,故還有一個抽取的個體的編號為18,故答案為:18【點(diǎn)睛】本題主要考查系統(tǒng)抽樣的定義和方法,屬于簡單題.16、【解析】
由題意可得,,解不等式可求.【詳解】解:由題意可得,,解可得,,故答案為.【點(diǎn)睛】本題主要考查了函數(shù)的定義域的求解,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】
(1)將函數(shù)整理為分段函數(shù)形式可得,進(jìn)而分類討論求解不等式即可;(2)先利用絕對值不等式的性質(zhì)得到的最大值為3,再利用均值定理證明即可.【詳解】(1)①當(dāng)時,恒成立,;②當(dāng)時,,即,;③當(dāng)時,顯然不成立,不合題意;綜上所述,不等式的解集為.(2)由(1)知,于是由基本不等式可得(當(dāng)且僅當(dāng)時取等號)(當(dāng)且僅當(dāng)時取等號)(當(dāng)且僅當(dāng)時取等號)上述三式相加可得(當(dāng)且僅當(dāng)時取等號),,故得證.【點(diǎn)睛】本題考查解絕對值不等式和利用均值定理證明不等式,考查絕對值不等式的最值的應(yīng)用,解題關(guān)鍵是掌握分類討論解決帶絕對值不等式的方法,考查了分析能力和計算能力,屬于中檔題.18、(1)1;(2)5.【解析】
(1)由同角三角函數(shù)關(guān)系求得,再由兩角差的正弦公式求得,最后由正弦定理構(gòu)建方程,求得答案.(2)在中,由正弦定理構(gòu)建方程求得AB,再由任意三角形的面積公式構(gòu)建方程求得BC,最后由余弦定理構(gòu)建方程求得AC.【詳解】(1)據(jù)題意,,且,所以.所以.在中,據(jù)正弦定理可知,,所以.(2)在中,據(jù)正弦定理可知,所以.因?yàn)榈拿娣e為14,所以,即,得.在中,據(jù)余弦定理可知,,所以.【點(diǎn)睛】本題考查由正弦定理與余弦定理解三角形,還考查了由同角三角函數(shù)關(guān)系和兩角差的正弦公式化簡求值,屬于簡單題.19、(1);(2)【解析】
(1)由得,兩式相減可得是從第二項(xiàng)開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當(dāng)時,,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因?yàn)椋?,兩式相減得:,即,是從第二項(xiàng)開始的等比數(shù)列,∵∴,則,;(2),當(dāng)時,;當(dāng)時,設(shè)遞增,,所以實(shí)數(shù)的最小值.【點(diǎn)睛】本題主要考查地推數(shù)列的應(yīng)用,屬于中檔題.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)條件由正弦定理得,又c=2a,所以,由余弦定理算出,進(jìn)而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計算即可.【詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,運(yùn)用二倍角公式和兩角和的正弦公式求值,考查了學(xué)生的運(yùn)算求解能力.21、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)點(diǎn)差法,即可求得直線的斜率,則方程即可求得;(Ⅱ)設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達(dá)定理,根據(jù),即可求得參數(shù)的值.【詳解】(1)設(shè),,則兩式相減,可得.(*)因?yàn)榫€段的中點(diǎn)坐標(biāo)為,所以,.代入(*)式,得.所以直線的斜率.所以直線的方程為,即.(Ⅱ)設(shè)直線:(),聯(lián)立整理得.所以,解得.所以,.所以,所以.所以.因?yàn)椋?【點(diǎn)睛】本題考查中點(diǎn)弦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年容器化部署運(yùn)維技巧指南
- 質(zhì)子治療系統(tǒng)(JQZ2500210)
- 2026甘肅天水長城果汁集團(tuán)股份有限公司招聘6人備考題庫及參考答案詳解
- 2026貴州烏當(dāng)區(qū)水務(wù)管理局公益性崗位招聘1人備考題庫及參考答案詳解一套
- 2026河南鄭州大學(xué)影視創(chuàng)研中心招聘3人備考題庫及參考答案詳解一套
- 2026年傳統(tǒng)村落保護(hù)活化方法解析
- 職業(yè)噪聲暴露心血管風(fēng)險的健康促進(jìn)策略-1
- 職業(yè)健康風(fēng)險評估方法學(xué)在化工行業(yè)中的國際經(jīng)驗(yàn)借鑒
- 天門事業(yè)單位招聘2022年考試模擬試題及答案解析10
- 職業(yè)健康促進(jìn)項(xiàng)目績效評估的可持續(xù)體系
- GB/T 42186-2022醫(yī)學(xué)檢驗(yàn)生物樣本冷鏈物流運(yùn)作規(guī)范
- 江蘇省南通市2024-2025學(xué)年高一上學(xué)期1月期末考試數(shù)學(xué)試題
- T/CA 105-2019手機(jī)殼套通用規(guī)范
- 以真育責(zé):小學(xué)生責(zé)任教育在求真理念下的探索與實(shí)踐
- 2019營口天成消防JB-TB-TC5120 火災(zāi)報警控制器(聯(lián)動型)安裝使用說明書
- 部編版語文六年級上冊第一單元綜合素質(zhì)測評B卷含答案
- 買賣肉合同樣本
- 五下語文快樂讀書吧《三國演義》導(dǎo)讀單
- 2025屆高考語文復(fù)習(xí):以《百合花》為例掌握小說考點(diǎn)
- 面向?qū)ο笙到y(tǒng)分析與設(shè)計(MOOC版)全套教學(xué)課件
- 2024-2025學(xué)年江蘇省鎮(zhèn)江市六年級語文上學(xué)期期末真題重組卷
評論
0/150
提交評論