2026屆河南名校聯(lián)盟數(shù)學高二上期末教學質量檢測試題含解析_第1頁
2026屆河南名校聯(lián)盟數(shù)學高二上期末教學質量檢測試題含解析_第2頁
2026屆河南名校聯(lián)盟數(shù)學高二上期末教學質量檢測試題含解析_第3頁
2026屆河南名校聯(lián)盟數(shù)學高二上期末教學質量檢測試題含解析_第4頁
2026屆河南名校聯(lián)盟數(shù)學高二上期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆河南名校聯(lián)盟數(shù)學高二上期末教學質量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線和互相平行,則實數(shù)()A. B.C.或 D.或2.命題p:存在一個實數(shù)﹐它的絕對值不是正數(shù).則下列結論正確的是()A.:任意實數(shù),它的絕對值是正數(shù),為假命題B.:任意實數(shù),它的絕對值不是正數(shù),為假命題C.:存在一個實數(shù),它的絕對值是正數(shù),為真命題D.:存在一個實數(shù),它的絕對值是負數(shù),為真命題3.已知向量,則下列結論正確的是()A.B.C.D.4.若,則下列等式一定成立的是()A. B.C. D.5.已知拋物線:的焦點為F,準線l上有兩點A,B,若為等腰直角三角形且面積為8,則拋物線C的標準方程是()A. B.C.或 D.6.如圖,過拋物線的焦點的直線交拋物線于點、,交其準線于點,若,且,則的值為()A. B.C. D.7.“直線的斜率不大于0”是“直線的傾斜角為鈍角”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知集合,,則()A. B.C. D.9.設、是橢圓:的左、右焦點,為直線上一點,是底角為的等腰三角形,則的離心率為A. B.C. D.10.設圓上的動點到直線的距離為,則的取值范圍是()A. B.C. D.11.在的展開式中,只有第4項的二項式系數(shù)最大,且所有項的系數(shù)和為0,則含的項的系數(shù)為()A.-20 B.-15C.-6 D.1512.現(xiàn)有60瓶飲料,編號從1到60,若用系統(tǒng)抽樣的方法從中抽取6瓶進行檢驗,則所抽取的編號可能為()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,30二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,,則向量在向量上的投影向量的坐標是___________.14.已知函數(shù),則滿足實數(shù)的取值范圍是__15.某工廠的某種型號的機器的使用年限和所支出的維修費用(萬元)有下表的統(tǒng)計資料:23456223.85.56.57.0根據(jù)上表可得回歸直線方程,則=_____.16.設數(shù)列滿足且,則________.數(shù)列的通項=________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)求函數(shù)在區(qū)間上的最大值與最小值.18.(12分)已知圓C:(1)若點,求過點的圓的切線方程;(2)若點為圓的弦的中點,求直線的方程19.(12分)在空間直角坐標系Oxyz中,O為原點,已知點,,,設向量,.(1)求與夾角的余弦值;(2)若與互相垂直,求實數(shù)k的值.20.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.(1)求證:平面平面;(2)若,求異面直線與所成角余弦值;(3)在線段上是否存在一點,使二面角大小為?若存在,請指出點的位置,若不存在,請說明理由.21.(12分)如圖,已知矩形ABCD所在平面外一點P,平面ABCD,E、F分別是AB、PC的中點求證:(1)共面;(2)求證:22.(10分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線為l:3x-y+1=0,若x=時,y=f(x)有極值(1)求a,b,c的值;(2)求y=f(x)在區(qū)間[-3,1]上最大值和最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)題意,結合兩直線的平行,得到且,即可求解.【詳解】由題意,直線和互相平行,可得且,即且,解得或.故選:C.2、A【解析】根據(jù)存在量詞命題的否定為全稱量詞命題判斷,再利用特殊值判斷命題的真假;【詳解】解:因為命題p“存在一個實數(shù)﹐它的絕對值不是正數(shù)”為存在量詞命題,其否定為“任意實數(shù),它的絕對值是正數(shù)”,因為,所以為假命題;故選:A3、D【解析】由題可知:,,,故選;D4、D【解析】利用復數(shù)除法運算和復數(shù)相等可用表示出,進而得到之間關系.【詳解】,,,則.故選:D.5、C【解析】分或()兩種情況討論,由面積列方程即可求解【詳解】由題意得,當時,,解得;當或時,,解得,所以拋物線的方程是或.故選:C.6、B【解析】分別過點、作準線的垂線,垂足分別為點、,設,根據(jù)拋物線的定義以及直角三角形的性質可求得,結合已知條件求得,分析出為的中點,進而可得出,即可得解.【詳解】如圖,分別過點、作準線的垂線,垂足分別為點、,設,則由己知得,由拋物線的定義得,故,在直角三角形中,,,因為,則,從而得,所以,,則為的中點,從而.故選:B.7、B【解析】直線傾斜角的范圍是[0°,180°),直線斜率為傾斜角(不為90°)的正切值,據(jù)此即可判斷求解.【詳解】直線的斜率不大于0,則直線l斜率可能等于零,此時直線傾斜角為0°,不為鈍角,故“直線的斜率不大于0”不是“直線的傾斜角為鈍角”充分條件;直線的傾斜角為鈍角時,直線的斜率為負,滿足直線的斜率不大于0,即“直線的傾斜角為鈍角”是“直線的斜率不大于0”的充分條件,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要條件;綜上,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要不充分條件.故選:B.8、A【解析】由已知得,因為,所以,故選A9、C【解析】如下圖所示,是底角為的等腰三角形,則有所以,所以又因為,所以,,所以所以答案選C.考點:橢圓的簡單幾何性質.10、C【解析】求出圓心到直線距離,再借助圓的性質求出d的最大值與最小值即可.【詳解】圓的方程化為,圓心為,半徑為1,則圓心到直線的距離,即直線和圓相離,因此,圓上的動點到直線的距離,有,,即,即的取值范圍是:.故選:C11、C【解析】先由只有第4項的二項式系數(shù)最大,求出n=6;再由展開式的所有項的系數(shù)和為0,用賦值法求出,用通項公式求出的項的系數(shù).【詳解】∵在的展開式中,只有第4項的二項式系數(shù)最大,∴在的展開式有7項,即n=6;而展開式的所有項的系數(shù)和為0,令x=1,代入,即,所以.∴是展開式的通項公式為:,要求含的項,只需,解得,所以系數(shù)為.故選:C12、A【解析】求得組距,由此確定正確選項.【詳解】,即組距為,A選項符合,其它選項不符合.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)投影向量的計算公式,計算出正確答案.【詳解】向量在向量上的投影向量的坐標是.故答案為:14、【解析】分別對,分別大于1,等于1,小于1的討論,即可.【詳解】對,分別大于1,等于1,小于1的討論,當,解得當,不存在,當時,,解得,故x的范圍為點睛】本道題考查了分段函數(shù)問題,分類討論,即可,難度中等15、08##【解析】根據(jù)表格中的數(shù)據(jù)求出,將點代入回歸直線求出即可.【詳解】由表格可得,,由于回歸直線過點,故,解得,故答案為:0.08.16、①.5②.【解析】設,根據(jù)題意得到數(shù)列是等差數(shù)列,求得,得到,利用,結合“累加法”,即可求得.【詳解】解:由題意,數(shù)列滿足,所以當時,,,解得,設,則,且,所以數(shù)列是等差數(shù)列,公差為,首項為,所以,即,所以,當時,可得,其中也滿足,所以數(shù)列的通項公式為.故答案為:;.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2),【解析】(1)根據(jù)導數(shù)的幾何意義即可求解;(2)根據(jù)導數(shù)的正負判斷f(x)的單調性,根據(jù)其單調性即可求最大值和最小值.【小問1詳解】,切點為(1,-2),∵,∴切線斜率,切線方程為;【小問2詳解】令,解得,1200極大值極小值2∵,,∴當時,,.18、(1)或(2)【解析】(1)求出圓的圓心與半徑,分過點的直線的斜率不存和存在兩種情況,利用圓心到直線距離等于半徑,即可求出切線方程;(2)根據(jù)圓心與弦中點的連線垂直線,可求出直線的斜率,進而求出結果.【小問1詳解】解:由題意知圓心的坐標為,半徑,當過點的直線的斜率不存在時,方程為由圓心到直線的距離知,此時,直線與圓相切當過點的直線的斜率存在時,設方程為,即.由題意知,解得,∴方程為故過點的圓的切線方程為或【小問2詳解】解:∵圓心,,即,又,∴,則.19、(1)(2)【解析】(1)由向量的坐標先求出,,,由向量的夾角公式可得答案.(2)由題意可得,從而求出參數(shù)的值【小問1詳解】由題,,,故,,,所以故與夾角余弦值為.【小問2詳解】由與的互相垂直知,,,即20、(1)證明見解析;(2);(3)存在,點在線段上位于靠近點的四等分點處.【解析】(1)證明平面,利用面面垂直的判定定理可證得結論成立;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得異面直線與所成角的余弦值;(3)假設存在點,設,其中,利用空間向量法可得出關于的方程,結合的取值范圍可求得的值,即可得出結論.【小問1詳解】證明:,,為的中點,則且,四邊形為平行四邊形,.,即,,又平面平面,平面平面,平面,平面平面,平面平面.【小問2詳解】解:,為的中點,.平面平面,且平面平面,平面,平面.如圖,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,則、、、、,,,則,,異面直線與所成角的余弦值為.【小問3詳解】解:假設存在點,設,其中,所以,,且,設平面法向量為,所以,令,可得,由(2)知平面的一個法向量為,二面角為,則,整理可得,因,解得.故存在點,且點在線段上位于靠近點的四等分點處.21、(1)詳見解析;(2)詳見解析.【解析】(1)以為原點,為軸,為軸,為軸,建立空間直角坐標系,設,,,求出,,,,0,,,,,從而,由此能證明共面(2)求出,0,,,,,由,能證明【詳解】證明:如圖,以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系,設,,,則0,,0,,2b,,2b,,0,,為AB的中點,F(xiàn)為PC的中點,0,,b,,b,,,2b,,共面.(2),【點睛】本題考查三個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論