2026屆全國普通高等學(xué)校數(shù)學(xué)高二上期末監(jiān)測試題含解析_第1頁
2026屆全國普通高等學(xué)校數(shù)學(xué)高二上期末監(jiān)測試題含解析_第2頁
2026屆全國普通高等學(xué)校數(shù)學(xué)高二上期末監(jiān)測試題含解析_第3頁
2026屆全國普通高等學(xué)校數(shù)學(xué)高二上期末監(jiān)測試題含解析_第4頁
2026屆全國普通高等學(xué)校數(shù)學(xué)高二上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆全國普通高等學(xué)校數(shù)學(xué)高二上期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,且,則的值為()A.4 B.2C.3 D.12.若函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是()A. B.C. D.3.某幾何體的三視圖如圖所示,則其對應(yīng)的幾何體是A. B.C. D.4.已知橢圓(a>b>0)的離心率為,則=()A. B.C. D.5.平面上動點到點的距離與它到直線的距離之比為,則動點的軌跡是()A.雙曲線 B.拋物線C.橢圓 D.圓6.設(shè)是定義在R上的函數(shù),其導(dǎo)函數(shù)為,滿足,若,則()A. B.C. D.a,b的大小無法判斷7.設(shè)實系數(shù)一元二次方程在復(fù)數(shù)集C內(nèi)的根為、,則由,可得.類比上述方法:設(shè)實系數(shù)一元三次方程在復(fù)數(shù)集C內(nèi)的根為,則的值為A.﹣2 B.0C.2 D.48.在等差數(shù)列中,若,,則公差d=()A. B.C.3 D.-39.拋擲兩枚硬幣,若記出現(xiàn)“兩個正面”“兩個反面”“一正一反”的概率分別為,,,則下列判斷中錯誤的是().A. B.C. D.10.已知直線與圓相交于,兩點,則的取值范圍為()A. B.C. D.11.某學(xué)生2021年共參加10次數(shù)學(xué)競賽模擬考試,成績分別記為,,,…,,為研究該生成績的起伏變化程度,選用一下哪個數(shù)字特征最為合適()A.,,,…,的平均值; B.,,,…,的標(biāo)準差;C.,,,…,的中位數(shù); D.,,,…,的眾數(shù);12.已知函數(shù),則曲線在點處的切線與坐標(biāo)軸圍成的三角形的面積是()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.我國民間剪紙藝術(shù)在剪紙時經(jīng)常會沿紙的某條對稱軸把紙對折.現(xiàn)有一張半徑為的圓形紙,對折次可以得到兩個規(guī)格相同的圖形,將其中之一進行第次對折后,就會得到三個圖形,其中有兩個規(guī)格相同,取規(guī)格相同的兩個之一進行第次對折后,就會得到四個圖形,其中依然有兩個規(guī)格相同,以此類推,每次對折后都會有兩個圖形規(guī)格相同.如果把次對折后得到的不同規(guī)格的圖形面積和用表示,由題意知,,則________;如果對折次,則________.14.已知雙曲線的左右焦點分別為,過點的直線交雙曲線右支于A,B兩點,若是等腰三角形,且,則的面積為___________.15.已知拋物線的焦點為,過焦點的直線交拋物線與兩點,且,則拋物線的準線方程為________.16.函數(shù)在點處的切線方程是_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,側(cè)面底面,是以為斜邊的等腰直角三角形,,,,點E為的中點.(1)證明:平面;(2)求二面角的余弦值.18.(12分)如圖,正三棱柱中,D是的中點,.(1)求點C到平面的距離;(2)試判斷與平面的位置關(guān)系,并證明你的結(jié)論.19.(12分)如圖,在三棱柱中,=2,且,⊥底面ABC.E為AB中點(1)求證:平面;(2)求平面與平面CEB夾角的余弦值20.(12分)在平面直角坐標(biāo)系中,動點到點的距離等于點到直線的距離.(1)求動點的軌跡方程;(2)記動點的軌跡為曲線,過點的直線與曲線交于兩點,在軸上是否存在一點,使若存在,求出點的坐標(biāo);若不存在,請說明理由.21.(12分)如圖,三棱錐中,兩兩垂直,,且分別為線段的中點.(1)若點是線段的中點,求證:直線平面;(2)求證:平面平面.22.(10分)如圖所示,在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,A1C的中點,AD=AA1=2,AB=(1)求證:EF∥平面ADD1A1;(2)求平面EFD與平面DEC的夾角的余弦值;(3)在線段A1D1上是否存在點M,使得BM⊥平面EFD?若存在,求出的值;若不存在,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意可得,利用空間向量數(shù)量積的坐標(biāo)表示列方程,解方程即可求解.【詳解】因為,所以,因為向量,,所以,解得,所以的值為,故選:A.2、A【解析】由函數(shù)在上單調(diào)遞增,可得,從而可求出實數(shù)的取值范圍【詳解】由,得,因為函數(shù)在區(qū)間上單調(diào)遞增,所以在區(qū)間上恒成立,即恒成立,因為,所以,所以,所以實數(shù)的取值范圍為,故選:A3、A【解析】根據(jù)三視圖即可還原幾何體.【詳解】根據(jù)三視圖,特別注意到三視圖中對角線的位置關(guān)系,容易判斷A正確.【點睛】本題主要考查了三視圖,屬于中檔題.4、D【解析】由離心率得,再由轉(zhuǎn)化為【詳解】因為,所以8a2=9b2,所以故選:D.5、A【解析】設(shè)點,利用距離公式化簡可得出點的軌跡方程,即可得出動點的軌跡圖形.【詳解】設(shè)點,由題意可得,化簡可得,即,曲線為反比例函數(shù)圖象,故動點的軌跡是雙曲線.故選:A.6、A【解析】首先構(gòu)造函數(shù),再利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可判斷選項.【詳解】設(shè),,所以函數(shù)在單調(diào)遞增,即,所以,那么,即.故選:A7、A【解析】用類比推理得到,再用待定系數(shù)法得到,,再根據(jù)求解.【詳解】,由對應(yīng)系數(shù)相等得:,.故選:A.【點睛】本題主要考查合情推理以及待定系數(shù)法,還考查了轉(zhuǎn)化化歸的思想和邏輯推理的能力,屬于中檔題.8、C【解析】由等差數(shù)列的通項公式計算【詳解】因為,,所以.故選:C【點睛】本題考查等差數(shù)列的通項公式,利用等差數(shù)列通項公式可得,9、A【解析】把拋擲兩枚硬幣的情況均列舉出來,利用古典概型的計算公式,把,,算出來,判斷四個選項的正誤.【詳解】兩枚硬幣,記為與,則拋擲兩枚硬幣,一共會出現(xiàn)的情況有四種,A正B正,A正B反,A反B正,A反B反,則,,,所以A錯誤,BCD正確故選:A10、C【解析】求得直線恒過的定點,找出弦長取得最值的狀態(tài),利用弦長公式求解即可.【詳解】因直線方程為:,整理得,故該直線恒過定點,又,故點在圓內(nèi),又圓的圓心為則,此時直線過圓心;當(dāng)直線與直線垂直時,取得最小值,此時.故的取值范圍為.故選:.11、B【解析】根據(jù)平均數(shù)、標(biāo)準差、中位數(shù)及眾數(shù)的概念即得.【詳解】根據(jù)平均數(shù)、中位數(shù)、眾數(shù)的概念可知,平均數(shù)、中位數(shù)、眾數(shù)描述數(shù)據(jù)的集中趨勢,標(biāo)準差描述數(shù)據(jù)的波動大小估計數(shù)據(jù)的穩(wěn)定程度.故選:B.12、B【解析】根據(jù)導(dǎo)數(shù)的幾何意義,求出切線方程,求出切線和橫截距a和縱截距b,面積為【詳解】由題意可得,所以,則所求切線方程為令,得;令,得故所求三角形的面積為故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】首先根據(jù)題意得到,再計算即可;根據(jù)題意得到,再利用分組求和法求和即可.【詳解】因為,,所以,所以..故答案為:;14、【解析】根據(jù)題意可知,,再結(jié)合,即可求出各邊,從而求出的面積【詳解】,所以,而是的等腰三角形,所以,故的面積為故答案為:15、【解析】根據(jù)題意作出圖形,設(shè)直線與軸的夾角為,不妨設(shè),設(shè)拋物線的準線與軸的交點為,過點作準線與軸的垂線,垂足分別為,過點分別作準線和軸的垂線,垂足分別為,進一步可以得到,進而求出,同理求出,最后解得答案.【詳解】設(shè)直線與軸的夾角為,根據(jù)拋物線的對稱性,不妨設(shè),如圖所示.設(shè)拋物線的準線與軸的交點為,過點作準線與軸的垂線,垂足分別為,過點分別作準線和軸的垂線,垂足分別為.由拋物線的定義可知,,同理:,于是,,則拋物線的準線方程為:.故答案為:.16、【解析】求得函數(shù)的導(dǎo)數(shù),得到且,再結(jié)合直線的點斜式,即可求解.【詳解】由題意,函數(shù),可得,則且,所以在點處切線方程是,即故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】(1)用線線平行證明線面平行,∴在平面PCD內(nèi)作BE的平行線即可;(2)求二面角的大小,可以用空間向量進行求解,根據(jù)已知條件,以AD中點O為原點,OB,AD,OP分別為x、y、z軸建立坐標(biāo)系﹒【小問1詳解】如圖,取PD中點F,連接EF,F(xiàn)C﹒∵E是AP中點,∴EFAD,由題知BCAD,∴BCEF,∴BCFE是平行四邊形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小問2詳解】取AD中點O,連接OP,OB,∵是以為斜邊等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥AD,AD=2BC知OB⊥OD,∴OP、OB、OD兩兩垂直,故以O(shè)原點,OB、OD、OP分別為x、y、z軸,建立空間直角坐標(biāo)系Oxyz,如圖:設(shè)|BC|=1,則B(1,0,0),D(0,1,0),E(0,),P(0,0,1),則,設(shè)平面BED的法向量為,平面PBD的法向量為則,取,,取設(shè)二面角的大小為θ,則cosθ=﹒18、(1)(2)平行,證明過程見解析.【解析】(1)利用等體積法即可求解;(2)利用線面平行判定即可求解.【小問1詳解】解:正三棱柱中,D是的中點,所以,,正三棱柱中,所以又因為正三棱柱中,側(cè)面平面且交線為且平面中,所以平面又平面所以設(shè)點C到平面的距離為在三棱錐中,即所以點C到平面的距離為.【小問2詳解】與平面的位置,證明如下:連接交于點,連接,如下圖所示,因為正三棱柱的側(cè)面為矩形所以為的中點又因為為中點所以為的中位線所以又因為平面,且平面所以平面19、(1)證明見解析;(2).【解析】(1)連接與交于點O,連接OE,得到,再利用線面平行的判定定理證明即可;(2)根據(jù),底面,建立空間直角坐標(biāo)系,求得平面的一個法向量,再根據(jù)底面,得到平面一個法向量,然后由夾角公式求解.【小問1詳解】如圖所示:連接與交于點O,連接OE,如圖,由分別為的中點所以,又平面,平面,所以平面;【小問2詳解】由,底面,故底面建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面的一個法向量為:,則,即,令,則,則,因為底面,所以為平面一個法向量,所以所以平面與平面CEB夾角的余弦值為.20、(1);(2)存在,.【解析】(1)利用拋物線的定義即求;(2)由題可設(shè)直線的方程為,利用韋達定理法結(jié)合條件可得,即得.【小問1詳解】因為動點到點的距離等于點到直線的距離,所以動點到點的距離和它到直線的距離相等,所以點的軌跡是以為焦點,以直線為準線的拋物線,設(shè)拋物線方程為,由,得,所以動點的軌跡方程為.【小問2詳解】由題意可知,直線的斜率不為0,故設(shè)直線的方程為,.聯(lián)立,得,恒成立,由韋達定理,得,,假設(shè)存在一點,滿足題意,則直線的斜率與直線的斜率滿足,即,所以,所以解得,所以存在一點,滿足,點的坐標(biāo)為.21、(1)證明見解析(2)證明見解析【解析】(1)由題意可得,從而可證.(2)由題意可得平面,從而可得,由根據(jù)條件可得,從而可得平面,從而可得證.【小問1詳解】由分別為線段的中點.由中位線定理知,又平面,且平面,所以直線平面【小問2詳解】兩兩垂直,即,且所以平面,又平面,所以由,且分別為線段的中點,所以,因此根據(jù)線面垂直判定定理得平面,且平面所以平面平面.22、(1)證明見解析;(2);(3)不存在;理由見解析【解析】(1)連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO,根據(jù)判定定理證明四邊形AEFO是平行四邊形,進而得到線面平行;(2)建立坐標(biāo)系,求出兩個面的法向量,求得兩個法向量的夾角的余弦值,進而得到二面角的夾角的余弦值;(3)假設(shè)在線段A1D1上存在一點M,使得BM⊥平面EFD,設(shè)出點M的坐標(biāo),由第二問得到平面EFD的一個法向量,判斷出和該法向量不平行,故不存在滿足題意的點M.【詳解】(1)證明:連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO因為F是A1C的中點,所以O(shè)F∥CD,OF=CD因AE∥CD,AE=CD,所以O(shè)F∥AE,OF=AE所以四邊形AEFO是平行四邊形所以EF∥AO因為EF?平面ADD1A1,AO?平面ADD1A1,所以EF∥平面ADD1A1(2)以點A為坐標(biāo)原點,直線AB,AD,AA1分別為x軸,y軸,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論