版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆杭州市采荷中學高二上數學期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓C:的圓心坐標和半徑分別為()A.和4 B.(-3,2)和4C.和 D.和2.拋物線的準線方程是()A. B.C. D.3.已知x是上的一個隨機的實數,則使x滿足的概率為()A. B.C. D.4.如圖,在四面體中,,,,,為線段的中點,則等于()A B.C. D.5.第24屆冬季奧林匹克運動會,將于2022年2月4日在北京市和張家口市聯合舉行.北京將成為奧運史上第一個舉辦過夏季奧林匹克運動會和冬季奧林匹克運動會的城市.根據安排,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結構鳥瞰圖如圖所示,內外兩圈的鋼骨架是兩個“相似橢圓”(離心率相同的兩個橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長軸一端點A和短軸一端點B分別向內層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.6.的二項展開式中,二項式系數最大的項是第()項.A.6 B.5C.4和6 D.5和77.橢圓的焦點坐標為()A.和 B.和C.和 D.和8.已知長方體中,,,則直線與所成角的余弦值是()A. B.C. D.9.執(zhí)行如圖所示的程序框圖,輸出的值為()A. B.C. D.10.已知拋物線上的點到其準線的距離為,則()A. B.C. D.11.函數,則曲線在點處的切線方程為()A. B.C. D.12.若命題p為真命題,命題q為假命題,則下列命題為真命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在長方體中,設,,則異面直線與所成角的大小為______14.如圖,已知橢圓E的方程為(a>b>0),A為橢圓的左頂點,B,C在橢圓上,若四邊形OABC為平行四邊形,且∠OAB=30°,則橢圓的離心率等于________15.中國的西氣東輸工程把西部地區(qū)的資源優(yōu)勢變?yōu)榻洕鷥?yōu)勢,實現了天然氣能源需求與供給的東西部銜接,工程建設也加快了西部及沿線地區(qū)的經濟發(fā)展.輸氣管道工程建設中,某段管道鋪設要經過一處峽谷,峽谷內恰好有一處直角拐角,水平橫向移動輸氣管經過此拐角,從寬為的峽谷拐入寬為的峽谷,如圖所示,位于峽谷懸崖壁上兩點,的連線恰好經過拐角內側頂點(點,,在同一水平面內),設與較寬側峽谷懸崖壁所成的角為,則的長為______(用表示).要使輸氣管順利通過拐角,其長度不能低于______.16.已知幾何體如圖所示,其中四邊形ABCD,CDGF,ADGE均為正方形,且邊長為1,點M在DG上,若直線MB與平面BEF所成的角為45°,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,側棱底面ABCD,,,E為PB中點,F為PC上一點,且(1)求證:;(2)求平面DEF與平面ABCD所成銳二面角的余弦值18.(12分)甲、乙兩人參加普法知識競賽,共有5題,選擇題(1)甲、乙兩人中有一個抽到選擇題(2)甲、乙兩人中至少有一人抽到選擇題19.(12分)已知數列的前項和為,且(1)求數列的通項公式;(2)若,求數列的前項和.20.(12分)已知是等差數列,是等比數列,且,,,.(1)求的通項公式;(2)設,求數列的前n項和.21.(12分)某廠A車間為了確定合理的工時定額,需要確定加工零件所花費的時間,為此作了五次試驗,得到數據如下:加工零件的個數x12345加工的時間y(小時)1.52.43.23.94.5(1)在給定的坐標系中畫出散點圖;(2)求出y關于x的回歸方程;(3)試預測加工9個零件需要多少時間?參考公式:,22.(10分)如圖,在三棱錐中,,,記二面角的平面角為(1)若,,求三棱錐的體積;(2)若M為BC的中點,求直線AD與EM所成角的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先將方程化為一般形式,再根據公式計算求解即可.【詳解】解:可化為,由圓心為,半徑,易知圓心的坐標為,半徑為故選:C2、D【解析】將拋物線的方程化為標準方程,可得出該拋物線的準線方程.【詳解】拋物線的標準方程為,則,可得,因此,該拋物線的準線方程為.故選:D.3、B【解析】先解不等式得到的范圍,再利用幾何概型的概率公式進行求解.【詳解】由得,即,所以使x滿足的概率為故選:B.4、D【解析】根據空間向量的線性運算求解【詳解】由已知,故選:D5、C【解析】設內層橢圓的方程為,可得外層橢圓的方程為,設切線的方程為,聯立方程組,根據,得到,同理得到,結合題意求得,進而求得離心率.【詳解】設內層橢圓方程為,因為內外層的橢圓的離心率相同,可設外層橢圓的方程為,設切線的方程為,聯立方程組,整理得,由,整理得,設切線的方程為,同理可得,因為兩切線斜率之積等于,可得,可得,所以離心率為.故選:C.6、A【解析】由二項展開的中間項或中間兩項二項式系數最大可得解.【詳解】因為二項式展開式一共11項,其中中間項的二項式系數最大,易知當r=5時,最大,即二項展開式中,二項式系數最大的為第6項.故選:A7、D【解析】本題是焦點在x軸的橢圓,求出c,即可求得焦點坐標.【詳解】,可得焦點坐標為和.故選:D8、C【解析】建立空間直角坐標系,設直線與所成角為,由求解.【詳解】∵長方體中,,,∴分別以,,為,,軸建立如圖所示空間直角坐標系,,則,,,,所以,,設直線與所成角為,則,∴直線和夾角余弦值是.故選:C.9、B【解析】根據程序框圖的循環(huán)邏輯寫出其執(zhí)行步驟,即可確定輸出結果.【詳解】由程序框圖的邏輯,執(zhí)行步驟如下:1、:執(zhí)行循環(huán),,;2、:執(zhí)行循環(huán),,;3、:執(zhí)行循環(huán),,;4、:執(zhí)行循環(huán),,;5、:執(zhí)行循環(huán),,;6、:不成立,跳出循環(huán).∴輸出的值為.故選:B.10、C【解析】首先根據拋物線的標準方程的形式,確定的值,再根據焦半徑公式求解.【詳解】,,因為點到的準線的距離為,所以,得故選:C11、D【解析】對函數求導,利用導數的幾何意義求出切線斜率即可計算作答.【詳解】依題意,,即有,而,則過點,斜率為1的直線方程為:,所以曲線在點處切線方程為.故選:D12、B【解析】根據邏輯聯結詞“且”,一假則假,對四個選項一一判斷直接即可判斷.【詳解】邏輯聯結詞“且”,一假則假.因為命題p為真命題,命題q為假命題,所以為假命題,為真命題.所以,為假,故A錯誤;為真,故B正確;為假,故C錯誤;為假,故D錯誤.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】建立空間直角坐標系,用向量法即可求出異面直線與所成的角.【詳解】以為原點,所在直線分別為軸,軸,軸,建立空間直角坐標系,則,所以,因為,所以,即,所以異面直線與所成的角為.故答案為:90°.14、【解析】首先利用橢圓的對稱性和為平行四邊形,可以得出、兩點是關于軸對稱,進而得到;設,,,從而求出,然后由,利用,求得,最后根據得出離心率【詳解】解:是與軸重合的,且四邊形為平行四邊形,所以、兩點的縱坐標相等,、的橫坐標互為相反數,、兩點是關于軸對稱的由題知:四邊形為平行四邊形,所以可設,,代入橢圓方程解得:設為橢圓的右頂點,,四邊形為平行四邊形對點:解得:根據:得:故答案為:15、①.②.【解析】(1)利用三角關系分別利用表示、即可求解;(2)利用導數求最小值的方法即可求解.【詳解】過點分別作,,垂足分別為,,則,在中,,則,同理可得,所以.令,則,令,,得,即,由,解得,當時,;當時,,所以當時,取得極小值,也是最小值,則,故輸氣管的長度不能低于m.故答案為:;.16、##【解析】把該幾何體補成一個正方體,如圖,利用正方體的性質證明面面垂直得出直線MB與平面BEF所成的角,然后計算可得【詳解】把該幾何體補成一個正方體,如圖,,連接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面內的直線在平面上的射影是,即是直線MB與平面BEF所成的角,,,,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)依題意可得,再由,即可得到平面,從而建立空間直角坐標系,利用空間向量法證明即可;(2)利用空間向量法求出二面角的余弦值;【小問1詳解】證明:因為平面,平面,平面,則,,又,因為,,平面,所以平面,故以點為坐標原點,建立空間直角坐標系如圖所示,則,0,,,0,,,1,,,1,,,0,,,所以,則,所以,故;【小問2詳解】解:解:因為,設平面的法向量為,則,即,令,則,,故,因為底面,所以的一個法向量為,所以,故平面與平面夾角的余弦值為18、(1)(2)【解析】首先用列舉法,求得甲、乙兩人各抽一題的所有可能情況.(1)根據上述分析,分別求得“甲抽到判斷題,乙抽到選擇題(2)根據上述分析,求得“甲、乙兩人都抽到判斷題”的概率,根據對立事件概率計算公司求得“甲、乙兩人中至少有一人抽到選擇題【詳解】把3個選擇題因此基本事件的總數為.(1)記“甲抽到選擇題(2)記“甲、乙兩人至少有一人抽到選擇題【點睛】本小題主要考查互斥事件概率計算,考查對立事件,屬于基礎題.19、(1)(2)【解析】(1)根據,再結合等比數列的定義,即可求出結果;(2)由(1)可知,再利用錯位相減法,即可求出結果.【小問1詳解】解:因為,當時,,解得當時,,所以,即.所以數列是首項為2,公比為2的等比數列.故.【小問2詳解】解:由(1)知,則,所以①②,①-②得.所以數列的前項和20、(1)(2)【解析】(1)設是公差為d的等差數列,是公比為q的等比數列,運用通項公式可得,,進而得到所求通項公式;(2)求得,再由數列的求和方法:分組求和,運用等差數列和等比數列的求和公式,計算即可得到所求和.【小問1詳解】解:(1)設是公差為d的等差數列,是公比為q的等比數列,由,,可得,;即有,,則,則;【小問2詳解】解:,則數列的前n項和為.21、(1)圖見解析;(2);(3)小時.【解析】(1)根據表格數據在坐標系中描出對應點即可.(2)由表格中的數據代入公式算出,再求,即可得到方程;(3)中將自變量為9代入回歸方程可得需用時間.【小問1詳解】【小問2詳解】由表中數據得:,,,,由x與y之間具有線性相關關系,根據公式知:,,∴回歸直線方程為:【小問3詳解】將代入回歸直線方程得,,∴預測加工9個零件需要小時22、(1)(2)【解析】(1)作出輔助線,找到二面角的平面角,利用余弦定理求出,求出底面積和高,進而求出三棱錐的體積;(2)利用空間基底表達出,結合第一問結論求出,從而求出答案.【小問1詳解】取AC的中點F,連接FD,FE,由BC=2,則,故DF⊥AC,EF⊥AC,故∠DFE即為二面角的平面角,即,連接DE,作DH⊥FE,因為,所以平面DEF,因為DH平面DEF,所以AC⊥DH,因為,所以DH⊥平面ABC,因為,由勾股
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 化工節(jié)能降耗培訓課件
- 跨境電商保稅備貨模式創(chuàng)新項目在2025年跨境電商營銷策略的可行性研究
- 在線教育課程2025開發(fā)合同協議
- 在線教育平臺合作合同(2026年框架協議)
- 初中體育籃球運球動作的神經控制特征與生物力學模型構建課題報告教學研究課題報告
- 2026上海市退役軍人事務局系統招聘4人備考題庫帶答案詳解(完整版)
- 2026年導熱系數與材料選擇
- 2026云南野生動物園招聘3人備考題庫附答案詳解(奪分金卷)
- 2026廣東深圳市寶安區(qū)水田實驗學校誠聘初中小學數學教師備考題庫附答案詳解(考試直接用)
- 2026年房地產市場的國際化趨勢
- 安全教育培訓管理制度及流程
- 煤礦春節(jié)放假期間的工作方案及安全技術措施
- GB/T 5076-2025具有兩個軸向引出端的圓柱體元件的尺寸測量
- 幼兒園教育活動座位擺放指南
- 水池土建施工方案
- 2025中好建造(安徽)科技有限公司第二次社會招聘13人筆試考試備考試題及答案解析
- 移動支付安全體系架構-洞察與解讀
- 水泵維修安全知識培訓課件
- DB43∕T 1358-2017 地質災害治理工程質量驗收規(guī)范
- 軍犬的訓練考試題及答案
- 臨床病區(qū)藥品管理試題及答案2025年版
評論
0/150
提交評論