湖南省邵陽市雙清區(qū)十一中2026屆數(shù)學高一上期末考試試題含解析_第1頁
湖南省邵陽市雙清區(qū)十一中2026屆數(shù)學高一上期末考試試題含解析_第2頁
湖南省邵陽市雙清區(qū)十一中2026屆數(shù)學高一上期末考試試題含解析_第3頁
湖南省邵陽市雙清區(qū)十一中2026屆數(shù)學高一上期末考試試題含解析_第4頁
湖南省邵陽市雙清區(qū)十一中2026屆數(shù)學高一上期末考試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖南省邵陽市雙清區(qū)十一中2026屆數(shù)學高一上期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.把函數(shù)的圖象上所有點向左平行移動個單位長度,再把所得圖象上所有點的橫坐標縮短到原來的倍(縱坐標不變),得到的圖象所表示的函數(shù)是()A., B.,C., D.,2.工藝扇面是中國書面一種常見的表現(xiàn)形式.某班級想用布料制作一面如圖所示的扇面.已知扇面展開的中心角為,外圓半徑為,內(nèi)圓半徑為.則制作這樣一面扇面需要的布料為().A. B.C. D.3.集合,則A∩B=()A.[0,2] B.(1,2]C.[1,2] D.(1,+∞)4.已知△ABC的平面直觀圖△A′B′C′是邊長為a的正三角形,那么原△ABC的面積為()A. B.C. D.5.已知定義在R上的奇函數(shù)滿足:當時,.則()A.2 B.1C.-1 D.-26.如果函數(shù)在上的圖象是連續(xù)不斷的一條曲線,那么“”是“函數(shù)在內(nèi)有零點”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件7.在平行四邊形中,,,為邊的中點,,則()A.1 B.2C.3 D.48.某人去上班,先跑步,后步行.如果y表示該人離單位的距離,x表示出發(fā)后的時間,那么下列圖象中符合此人走法的是().A. B.C. D.9.圓(x-1)2+(y-1)2=1上的點到直線x-y=2的距離的最大值是()A.2 B.1+C.2+ D.1+10.函數(shù)(,且)的圖象恒過定點,且點在角的終邊上,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知偶函數(shù),x∈R,滿足f(1-x)=f(1+x),且當0<x<1時,f(x)=ln(x+),e為自然數(shù),則當2<x<3時,函數(shù)f(x)的解析式為______12.的值為______.13.設角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若角的終邊上一點的坐標為,則的值為__________14.若角的終邊與以原點為圓心的單位圓交于點,則的值為___________.15.已知,若,則________16.不等式的解為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.若函數(shù)自變量的取值區(qū)間為時,函數(shù)值的取值區(qū)間恰為,就稱區(qū)間為的一個“羅爾區(qū)間”.已知函數(shù)是定義在上的奇函數(shù),當時,.(1)求的解析式;(2)求函數(shù)在內(nèi)的“羅爾區(qū)間”;(3)若以函數(shù)在定義域所有“羅爾區(qū)間”上的圖像作為函數(shù)的圖像,是否存在實數(shù),使集合恰含有2個元素.若存在,求出實數(shù)的取值集合;若不存在,說明理由.18.已知函數(shù)f(x)=ax2-4ax+1+b(a>0)的定義域為[2,3],值域為[1,4];設(1)求a,b的值;(2)若不等式g(2x)-k?2x≥0在x∈[1,2]上恒成立,求實數(shù)k的取值范圍19.如圖,在四棱錐中,底面為平行四邊形,,.(1)求證:;(2)若為等邊三角形,,平面平面,求四棱錐的體積.20.已知函數(shù)的圖象(部分)如圖所示,(1)求函數(shù)的解析式和對稱中心坐標;(2)求函數(shù)的單調(diào)遞增區(qū)間21.已知函數(shù)的定義域是,設(1)求解析式及定義域;(2)若,求函數(shù)的最大值和最小值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用三角函數(shù)圖象變換依次列式求解作答.【詳解】函數(shù)的圖象上所有點向左平行移動個單位長度,所得圖象的解析式為,把圖象上所有點的橫坐標縮短到原來的倍(縱坐標不變),得到的圖象所表示的函數(shù)是,.故選:D【點睛】易錯點睛:涉及三角函數(shù)圖象變換問題,當周期變換和相位變換的先后順序不同時,原圖象沿x軸的伸縮量是不同的2、B【解析】由扇形的面積公式,可得制作這樣一面扇面需要的布料.【詳解】解:根據(jù)題意,由扇形的面積公式可得:制作這樣一面扇面需要的布料為.故選:B.【點睛】本題考查扇形的面積公式,考查學生的計算能力,屬于基礎題.3、B【解析】先求出集合A,B,再求兩集合的交集即可【詳解】解:由,得,所以,由于,所以,所以,所以,故選:B4、C【解析】根據(jù)直觀圖的面積與原圖面積的關系為,計算得到答案.【詳解】直觀圖的面積,設原圖面積,則由,得.故選:C.【點睛】本題考查了平面圖形的直觀圖的面積與原面積的關系,三角形的面積公式,屬于基礎題.5、D【解析】由奇函數(shù)定義得,從而求得,然后由計算【詳解】由于函數(shù)是定義在R上的奇函數(shù),所以,而當時,,所以,所以當時,,故.由于為奇函數(shù),故.故選:D.【點睛】本題考查奇函數(shù)的定義,掌握奇函數(shù)的概念是解題關鍵.6、A【解析】由零點存在性定理得出“若,則函數(shù)在內(nèi)有零點”舉反例即可得出正確答案.【詳解】由零點存在性定理可知,若,則函數(shù)在內(nèi)有零點而若函數(shù)在內(nèi)有零點,則不一定成立,比如在區(qū)間內(nèi)有零點,但所以“”是“函數(shù)在內(nèi)有零點”的充分而不必要條件故選:A【點睛】本題主要考查了充分不必要條件的判斷,屬于中檔題.7、D【解析】以為坐標原點,建立平面直角坐標系,設,再利用平面向量的坐標運算求解即可【詳解】以坐標原點,建立平面直角坐標系,設,則,,,,故,由可得,即,化簡得,故,故,,故故選:D8、D【解析】根據(jù)隨時間的推移該人所走的距離的大小的變化快慢,從而即可獲得問題的解答,即先利用時的函數(shù)值排除兩項,再利用曲線的斜率反映行進速度的特點選出正確結果【詳解】解:由題意可知:時所走的路程為0,離單位的距離為最大值,排除A、C,隨著時間的增加,先跑步,開始時隨的變化快,后步行,則隨的變化慢,所以適合的圖象為D;故選:D9、B【解析】根據(jù)圓心到直線的距離加上圓的半徑即為圓上點到直線距離的最大值求解出結果.【詳解】因為圓心為,半徑,直線的一般式方程為,所以圓上點到直線的最大距離為:,故選:B【點睛】本題考查圓上點到直線的距離的最大值,難度一般.圓上點到直線的最大距離等于圓心到直線的距離加上圓的半徑,最小距離等于圓心到直線的距離減去半徑.10、D【解析】根據(jù)對數(shù)型函數(shù)恒過定點得到定點,再根據(jù)點在角的終邊上,由三角函數(shù)的定義得,即可得到答案.【詳解】由于函數(shù)(,且)的圖象恒過定點,則,點,點在角的終邊上,.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由f(1-x)=f(1+x),再由偶函數(shù)性質(zhì)得到函數(shù)周期,再求當2<x<3時f(x)解析式【詳解】因為f(x)是偶函數(shù),滿足f(1-x)=f(1+x),所以f(1+x)=f(x-1),所以f(x)周期是2當2<x<3時,0<x-2<1,所以f(x-2)=ln(x-2+)=f(x),所以函數(shù)f(x)的解析式為f(x)=ln(x-2+)故答案為f(x)=ln(x-2+)【點睛】本題主要考查函數(shù)的奇偶性,考查利用函數(shù)的周期性求解析式,意在考查學生對這些知識的理解掌握水平和分析推理能力.12、【解析】利用對數(shù)恒等式直接求解.【詳解】解:由對數(shù)恒等式知:=2故答案為2.【點睛】本題考查指數(shù)式、對數(shù)式化簡求值,對數(shù)恒等式公式的合理運用,屬于基礎題.13、##0.5【解析】利用余弦函數(shù)的定義即得.【詳解】∵角的終邊上一點的坐標為,∴.故答案為:.14、##【解析】直接根據(jù)三角函數(shù)定義求解即可.【詳解】解:因為角的終邊與以原點為圓心的單位圓交于點,所以根據(jù)三角函數(shù)單位圓的定義得故答案為:15、1【解析】由已知條件可得,構造函數(shù),求導后可判斷函數(shù)在上單調(diào)遞增,再由,得,從而可求得答案【詳解】由題意得,,令,則,所以在上單調(diào)遞增,因為,所以,所以,故答案為:116、【解析】根據(jù)冪函數(shù)的性質(zhì),分類討論即可【詳解】將不等式轉(zhuǎn)化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此時無解;綜上,不等式的解集為:故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)存在,.【解析】(1)根據(jù)為上的奇函數(shù),得到,再由時,,設時,則代入求解.(2)設,易知在上單調(diào)遞減,則,則,是方程的兩個不等正根求解(3)設為的一個“羅爾區(qū)間”,且,同號,若,由(2)可得,若,同理可求,得到,再根據(jù)集合恰含有2個元素,轉(zhuǎn)化為與的圖象有兩個交點,即方程在內(nèi)恰有一個實數(shù)根,方程,在內(nèi)恰有一個實數(shù)根求解..【詳解】(1)因為為上的奇函數(shù),∴,又當時,,所以當時,,所以,所以.(2)設,∵在上單調(diào)遞減,∴,即,是方程的兩個不等正根,∵,∴,∴在內(nèi)的“羅爾區(qū)間”為.(3)設為的一個“羅爾區(qū)間”,則,∴,同號.當時,同理可求在內(nèi)的“羅爾區(qū)間”為,∴,依題意,拋物線與函數(shù)的圖象有兩個交點時,一個交點在第一象限,一個交點在第三象限,所以應當使方程在內(nèi)恰有一個實數(shù)根,且使方程,在內(nèi)恰有一個實數(shù)根,由方程,即在內(nèi)恰有一根,令,則,解得;由方程,即在內(nèi)恰有一根,令,則,解得.綜上可知,實數(shù)的取值集合為.【點睛】關鍵點點睛:本題關鍵是對“羅爾區(qū)間”的理解,特別是根據(jù)在上單調(diào)遞減,得到,轉(zhuǎn)化為,是方程的兩個不等正根求解18、(1);(2)【解析】(1)根據(jù)函數(shù)f(x)=ax2-4ax+1+b(a>0)的定義域為[2,3],值域為[1,4],其圖象對稱軸為直線x=2,且g(x)的最小值為1,最大值為4,列出方程可得實數(shù)a,b的值;(2)若不等式g(2x)-k?2x≥0在x∈[1,2]上恒成立,分離變量k,在x∈[1,2]上恒成立,進而得到實數(shù)k的取值范圍【詳解】(1)∵函數(shù)f(x)=ax2-4ax+1+b(a>0)其圖象對稱軸為直線x=2,函數(shù)的定義域為[2,3],值域為[1,4],∴,解得:a=3,b=12;(2)由(Ⅰ)得:f(x)=3x2-12x+13,g(x)==若不等式g(2x)-k?2x≥0在x∈[1,2]上恒成立,則k≤()2-2()+1在x∈[1,2]上恒成立,2x∈[2,4],∈[,],當=,即x=1時,()2-2()+1取最小值,故k≤【點睛】本題考查二次函數(shù)在閉區(qū)間上的最值,考查函數(shù)恒成立問題問題,考查數(shù)形結合與等價轉(zhuǎn)化、函數(shù)與方程思想的綜合應用,是中檔題19、(1)詳見解析;(2)2【解析】(1)根據(jù)題意作于,連結,可證得,于是,故,然后根據(jù)線面垂直的判定得到平面,于是可得所證結論成立.(2)由(1)及平面平面可得平面,故為四棱錐的高.又由題意可證得四邊形為有一個角為的邊長為的菱形,求得四邊形的面積后可得所求體積【詳解】(1)作于,連結.∵,,是公共邊,∴,∴∵,∴,又平面,平面,,∴平面,又平面,∴(另法:證明,取的中點.)(2)∵平面平面,平面平面,,∴平面又為等邊三角形,,∴.又由題意得,,是公共邊,∴,∴,∴平行四邊形為有一個角為的邊長為的菱形,∴,∴四棱錐的體積【點睛】(1)證明空間中的垂直關系時,要注意三種垂直關系間的轉(zhuǎn)化,合理運用三種垂直關系進行求解,以達到求解的目的,同時在證題中要注意平面幾何知識的運用(2)立體幾何中的計算問題中往往涉及到證明,同時在證明中滲透著計算,計算時要注意中間量的求解,最后再結合面積、體積公式得到所求20、(1),對稱中心;(2),【解析】(1)由函數(shù)的圖象得出A,求出函數(shù)的四分之一周期,從而得出ω,代入最高點坐標求出φ,得函數(shù)的解析式,進而求出對稱中心坐標;(2)令,從而得到函數(shù)的單調(diào)遞增區(qū)間.【詳解】(1)由題意可知,,,,又當時,函數(shù)取得最大值2,所以,,又因為,所以,所以函數(shù),令,,得對稱中心,.(2)令,解得,,所以單調(diào)遞增區(qū)間為,【點睛】求y=Asin(ωx+φ)的解析式,條件不管以何種方式給出,一般先求A,再求ω,最后求φ;求y=Asin(ωx+φ)的單調(diào)遞增區(qū)間、對稱軸方程、對稱中心坐標時,要把ωx+φ看作整體,分別代入正弦函數(shù)的單調(diào)遞增區(qū)間、對稱軸方程、對稱中心坐標分別求出x,這兒利用整體的思想;求y=Asin(ωx+φ)的最大值,需要借助正弦函數(shù)的最大值的求解方法即可21、(1)g(x)=22x-2x+2,定義域為[0,1](2)最大值為-3,最小值為-4【解析】(1)根據(jù)函數(shù),得到f(2x)和f(x+2)的解析式求解;再根據(jù)f(x)=2x的定義域是[0,3],由求g(x)的定義域;(2)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論