吉林省長春市榆樹第一高級中學2026屆高二上數(shù)學期末統(tǒng)考試題含解析_第1頁
吉林省長春市榆樹第一高級中學2026屆高二上數(shù)學期末統(tǒng)考試題含解析_第2頁
吉林省長春市榆樹第一高級中學2026屆高二上數(shù)學期末統(tǒng)考試題含解析_第3頁
吉林省長春市榆樹第一高級中學2026屆高二上數(shù)學期末統(tǒng)考試題含解析_第4頁
吉林省長春市榆樹第一高級中學2026屆高二上數(shù)學期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省長春市榆樹第一高級中學2026屆高二上數(shù)學期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若傾斜角為的直線過兩點,則實數(shù)()A. B.C. D.2.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:廣告費用(萬元)4235銷售額(萬元)49263954根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報廣告費用為6萬元時銷售額為A.63.6萬元 B.65.5萬元C.67.7萬元 D.72.0萬元3.在中,、、所對的邊分別為、、,若,,,則()A. B.C. D.4.直線的傾斜角為()A. B.C. D.5.正方體的表面積為,則正方體外接球的表面積為(

)A. B.C. D.6.已知圓,則圓上的點到坐標原點的距離的最小值為()A.-1 B.C.+1 D.67.某中學舉行黨史學習教育知識競賽,甲隊有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時現(xiàn)場從中隨機抽出名選手答題,則至少有名女同學被選中的概率是()A. B.C. D.8.已知正四面體的底面的中心為為的中點,則直線與所成角的余弦值為()A. B.C. D.9.點是正方體的底面內(nèi)(包括邊界)的動點.給出下列三個結(jié)論:①滿足的點有且只有個;②滿足的點有且只有個;③滿足平面的點的軌跡是線段.則上述結(jié)論正確的個數(shù)是()A. B.C. D.10.棱長為1的正四面體的表面積是()A. B.C. D.11.如圖,在三棱錐中,點E在上,滿足,點F為的中點,記分別為,則()A. B.C. D.12.已知雙曲線,過其右焦點作漸近線的垂線,垂足為,延長交另一條漸近線于點A.已知為原點,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,,,P,F(xiàn)分別是線段,的中點,則點P到直線EF的距離是___________.14.達?芬奇認為:和音樂一樣,數(shù)學和幾何“包含了宇宙的一切”,從年輕時起,他就本能地把這些主題運用在作品中,布達佩斯的伊帕姆維澤蒂博物館收藏的達?芬奇方磚,在正六邊形上畫了具有視覺效果的正方體圖案(如圖1),把三片這樣的達?芬奇方磚形成圖2的組合,這個組合表達了圖3所示的幾何體.若圖3中每個正方體的邊長為1,則點到直線的距離是__________.15.已知春季里,甲地每天下雨的概率為,乙地每天下雨的概率大于0,且甲、乙兩地下雨相互獨立,則春季的一天里,已知乙地下雨的條件下,甲地也下雨的概率為___________.16.正四棱錐底面邊長和高均為分別是其所在棱的中點,則棱臺的體積為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項和為,且滿足(1)證明數(shù)列是等比數(shù)列;(2)若數(shù)列滿足,證明數(shù)列的前n項和18.(12分)新冠肺炎疫情發(fā)生以來,我國某科研機構(gòu)開展應(yīng)急科研攻關(guān),研制了一種新型冠狀病毒疫苗,并已進入二期臨床試驗.根據(jù)普遍規(guī)律,志愿者接種疫苗后體內(nèi)會產(chǎn)生抗體,人體中檢測到抗體,說明有抵御病毒的能力.通過檢測,用表示注射疫苗后的天數(shù),表示人體中抗體含量水平(單位:,即:百萬國際單位/毫升),現(xiàn)測得某志愿者的相關(guān)數(shù)據(jù)如下表所示:天數(shù)123456抗體含量水平510265096195根據(jù)以上數(shù)據(jù),繪制了散點圖.(1)根據(jù)散點圖判斷,與(a,b,c,d均為大于0的實數(shù))哪一個更適宜作為描述y與x關(guān)系的回歸方程類型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果求出y關(guān)于x的回歸方程,并預(yù)測該志愿者在注射疫苗后的第10天的抗體含量水平值;(3)從這位志愿者前6天的檢測數(shù)據(jù)中隨機抽取4天的數(shù)據(jù)作進一步的分析,記其中的y值大于50的天數(shù)為X,求X的分布列與數(shù)學期望.參考數(shù)據(jù):3.5063.673.4917.509.4912.95519.014023.87其中.參考公式:用最小二乘法求經(jīng)過點,,,,的線性回歸方程的系數(shù)公式,;.19.(12分)已知數(shù)列滿足,.(1)求證數(shù)列是等差數(shù)列,并求通項公式;(2)已知數(shù)列的前項和為,求.20.(12分)(1)已知:函數(shù)有零點;:所有的非負整數(shù)都是自然數(shù).若為假,求實數(shù)的取值范圍;(2)已知:;:.若是的必要不充分條件,求實數(shù)的取值范圍.21.(12分)在平面直角坐標系中,已知.(1)求直線的方程;(2)平面內(nèi)的動點滿足,到點與點距離的平方和為24,求動點的軌跡方程.22.(10分)某學校為了調(diào)查本校學生在一周內(nèi)零食方面的支出情況,抽出了一個容量為的樣本,分成四組,,,,其頻率分布直方圖如圖所示,其中支出金額在元的學生有180人.(1)請求出的值;(2)如果采用分層抽樣的方法從,內(nèi)共抽取5人,然后從中選取2人參加學校的座談會,求在,內(nèi)正好各抽取一人的概率為多少.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】解方程即得解.【詳解】解:由題得.故選:A2、B【解析】,∵數(shù)據(jù)的樣本中心點在線性回歸直線上,回歸方程中的為9.4,∴42=9.4×3.5+a,∴=9.1,∴線性回歸方程是y=9.4x+9.1,∴廣告費用為6萬元時銷售額為9.4×6+9.1=65.5考點:線性回歸方程3、B【解析】利用正弦定理,以及大邊對大角,結(jié)合正弦定理,即可求得.【詳解】根據(jù)題意,由正弦定理,可得:,解得,故可得或,由,可得,故故選:B.4、D【解析】由直線斜率概念可寫出傾斜角的正切值,進而可求出傾斜角.【詳解】因為直線的斜率為,所以傾斜角.故選D【點睛】本題主要考查直線的傾斜角,由斜率的概念,即可求出結(jié)果.5、B【解析】由正方體表面積求得棱長,再求得正方體的對角線長,即為外接球的直徑,從而可得球表面積【詳解】設(shè)正方體棱長為,由得,正方體對角線長,所以其外接球半徑為,球表面積為故選:B6、A【解析】先求出圓心和半徑,求出圓心到坐標原點的距離,從而求出圓上的點到坐標原點的距離的最小值.【詳解】變形為,故圓心為,半徑為1,故圓心到原點的距離為,故圓上的點到坐標原點的距離最小值為.故選:A7、D【解析】現(xiàn)場選名選手,共種情況,設(shè),,,四位同學為男同學則沒有女同學被選中的情況,共有6種,利用對立事件進行求解,即可得到答案;【詳解】現(xiàn)場選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設(shè),,,四位同學為男同學則沒有女同學被選中的情況是:,,,,,共種,則至少有一名女同學被選中的概率為.故選:.8、B【解析】連接,再取中點,連接,得到為直線與所成角,再解三角形即可.【詳解】連接,再取中點,連接,因為分別為VC,中點,則,且底面,所以為直線與所成角,令正四面體邊長為1,則,,,所以,故選:.9、C【解析】對于①,根據(jù)線線平行的性質(zhì)可知點即為點,因此可判斷①正確;對于②,根據(jù)線面垂直的判定可知平面,,由此可判定的位置,進而判定②的正誤;對于③,根據(jù)面面平行可判定平面平面,因此可判斷此時一定落在上,由此可判斷③的正誤.【詳解】如圖:對于①,在正方體中,,若異于,則過點至少有兩條直線和平行,這是不可能的,因此底面內(nèi)(包括邊界)滿足的點有且只有個,即為點,故①正確;對于②,正方體中,平面,平面,所以,又,所以,而,平面,故平面,因此和垂直的直線一定落在平面內(nèi),由是平面上的動點可知,一定落在上,這樣的點有無數(shù)多個,故②錯誤;對于③,,平面,則平面,同理平面,而,所以平面平面,而平面,所以一定落在平面上,由是平面上的動點可知,此時一定落在上,即點的軌跡是線段,故③正確,故選:C.10、D【解析】采用數(shù)形結(jié)合,根據(jù)邊長,結(jié)合正四面體的概念,計算出正三角形的面積,可得結(jié)果【詳解】如圖由正四面體的概念可知,其四個面均是全等的等邊三角形,由其棱長為1,所以,所以可知:正四面體的表面積為,故選:D11、B【解析】利用空間向量加減、數(shù)乘的幾何意義,結(jié)合三棱錐用表示出即可.【詳解】由題設(shè),,,,.故選:B12、C【解析】畫出圖象,結(jié)合漸近線方程得到,,進而得到,結(jié)合漸近線的斜率及角度關(guān)系,列出方程,求出,從而求出.【詳解】漸近線為,如圖,過點F作FB垂直于點B,交于點A,則到漸近線距離為,則,又,由勾股定理得:,則,又,,所以,解得:,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以A為坐標原點建立空間直角坐標系,利用向量法即可求解點P到直線EF的距離.【詳解】解:如圖,以A為坐標原點,,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,因為,所以,,,所以,,所以點P到直線EF的距離.故答案為:.14、【解析】根據(jù)題意,求得△的三條邊長,在三角形中求邊邊上的高線即可.【詳解】根據(jù)題意,延長交于點,連接,如下所示:在△中,容易知:;同理,,滿足,設(shè)點到直線的距離為,由等面積法可知:,解得,即點到直線的距離是.故答案為:.15、##0.5【解析】根據(jù)條件概率求概率的方法即可求得答案.【詳解】設(shè)A表示“甲地每天下雨”,B表示“乙地每天下雨”,乙地每天下雨的概率為p,則,因為甲乙兩地下雨相互獨立,所以,于是在乙地下雨的條件下,甲地也下雨的概率為.故答案為:.16、【解析】分別計算,,作差得到答案.【詳解】分別是其所在棱的中點,則正四棱錐底面邊長和高均為,,,故.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)可根據(jù)已知的與的遞推關(guān)系,利用求解出數(shù)列的首項,然后當時,遞推做差,利用消掉,即可得到與之間的關(guān)系,從而完成證明;(2)利用第(1)問求解出的數(shù)列的通項公式,帶入到中,再使用錯位相減法進行求和,根據(jù)最后計算的結(jié)果與比較即可完成證明.【小問1詳解】由題意得,當時,,∴,當時,,∴,∵,∴,于是有,故數(shù)列是以3為首項,3為公比的等比數(shù)列.得證.【小問2詳解】由(1)可知,∴,,①,②,②?①得:,∴,∵,故,∴得證.18、(1)(2),4023.87(3)分布列答案見解析,數(shù)學期望:【解析】(1)由于這些點分布在一條曲線的附近,從而可選出回歸方程,(2)設(shè),,則建立w關(guān)于x的回歸方程,然后根據(jù)公式和表中的數(shù)據(jù)求解回歸方程即可,再將代入回歸方程可求得在注射疫苗后的第10天的抗體含量水平值,(3)由題意可知x的可能取值為0,1,2,然后求對應(yīng)的概率,從而可求出分布列和期望【小問1詳解】根據(jù)散點圖可知這些點分布在一條曲線的附近,所以更適合作為描述y與x關(guān)系的回歸方程類型.【小問2詳解】設(shè),變換后可得,設(shè),建立w關(guān)于x的回歸方程,,所以所以w關(guān)于x的回歸方程為,所以,當時,,即該志愿者在注射疫苗后的第10天的抗體含量水平值約為4023.87miu/mL.【小問3詳解】由表格數(shù)據(jù)可知,第5,6天的y值大于50,故x的可能取值為0,1,2,,,,X的分布列為012.19、(1)證明見詳解,(2)【解析】(1)由題意將原式化簡變形得到,可證明數(shù)列是等差數(shù)列,由等差數(shù)列的通項公式則可得,進而得到的通項公式;(2)由(1)把的通項公式代入,得到,利用乘公比錯位相減法求和即可.【小問1詳解】若,則,這與矛盾,,由已知得,,故數(shù)列是以為首項,2為公差的等差數(shù)列,,即.【小問2詳解】設(shè),則由(1)知,所以,,兩式相減,則,所以.20、(1);(2).【解析】(1)易知為真命題,根據(jù)且命題的真假可知為假命題,結(jié)合函數(shù)零點與對應(yīng)方程的根之間的關(guān)系得出,解不等式即可;(2)根據(jù)一元二次不等式的解法可得和,結(jié)合必要不充分條件的概念可得,利用集合與集合之間的關(guān)系即可得出答案.【詳解】解:(1)對于:所有的非負整數(shù)都是自然數(shù),顯然正確.因為為假,所以為假.所以“函數(shù)沒有零點”為真,所以,解得.所以實數(shù)的取值范圍是.(2)對于:,解得或.對于,不等式的解集為,因為是的必要不充分條件,所以所以或,所以或,所以實數(shù)的取值范圍是.21、(1)(2)【解析】(1)結(jié)合點斜式求得直線的方程.(2)設(shè),根據(jù)已知條件列方程,化簡求得的軌跡方程.【小問1詳解】,于是直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論