2026屆寧夏石嘴山市三中數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2026屆寧夏石嘴山市三中數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2026屆寧夏石嘴山市三中數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2026屆寧夏石嘴山市三中數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2026屆寧夏石嘴山市三中數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆寧夏石嘴山市三中數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.關(guān)于的不等式的解集為,且,則()A.3 B.C.2 D.2.已知函數(shù),則該函數(shù)的零點位于區(qū)間()A. B.C. D.3.已知,則=()A. B.C. D.4.將化為弧度為A. B.C. D.5.已知函數(shù),若不等式對任意實數(shù)x恒成立,則a的取值范圍為()A B.C. D.6.菱形ABCD在平面α內(nèi),PC⊥α,則PA與BD的位置關(guān)系是()A.平行 B.相交但不垂直C.垂直相交 D.異面且垂直7.若圓錐的底面半徑為2cm,表面積為12πcm2,則其側(cè)面展開后扇形的圓心角等于()A. B.C. D.8.()A. B.C. D.19.已知,,則A. B.C. D.10.下列函數(shù)值為的是()A.sin390° B.cos750°C.tan30° D.cos30°二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的終邊過點,則_______12.設(shè)函數(shù)的定義域為D,若存在實數(shù),使得對于任意,都有,則稱為“T—單調(diào)增函數(shù)”對于“T—單調(diào)增函數(shù)”,有以下四個結(jié)論:①“T—單調(diào)增函數(shù)”一定在D上單調(diào)遞增;②“T—單調(diào)增函數(shù)”一定是“—單調(diào)增函數(shù)”(其中,且):③函數(shù)是“T—單調(diào)增函數(shù)”(其中表示不大于x的最大整數(shù));④函數(shù)不“T—單調(diào)增函數(shù)”其中,所有正確的結(jié)論序號是______13.直線與圓相交于A,B兩點,則線段AB的長為__________14.函數(shù)的定義域是___________,若在定義域上是單調(diào)遞增函數(shù),則實數(shù)的取值范圍是___________15.已知,若方程恰有個不同的實數(shù)解、、、,且,則______16.已知函數(shù)圖像關(guān)于對稱,當(dāng)時,恒成立,則滿足的取值范圍是_____________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在①,,②,,兩個條件中任選一個,補充到下面問題的橫線中,并求解該問題.已知函數(shù)___________(填序號即可).(1)求函數(shù)的解析式及定義域;(2)解不等式.18.如圖,是半徑為的半圓,為直徑,點為的中點,點和點為線段的三等分點,平面外一點滿足平面,=.(1)證明:;(2)求點到平面的距離.19.二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x+5.20.已知函數(shù)在區(qū)間上的最大值為6,(1)求常數(shù)m的值;(2)若,且,求的值.21.已知函數(shù).(1)求的值;(2)設(shè),求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)一元二次不等式與解集之間的關(guān)系可得、,結(jié)合計算即可.【詳解】由不等式的解集為,得,不等式對應(yīng)的一元二次方程為,方程的解為,由韋達定理,得,,因為,所以,即,整理,得.故選:A2、B【解析】分別將選項中區(qū)間的端點代入,利用零點存在性定理判斷即可【詳解】由題,,,,所以,故選:B【點睛】本題考查利用零點存在性定理判斷零點所在區(qū)間,屬于基礎(chǔ)題3、B【解析】根據(jù)兩角和的正切公式求出,再根據(jù)二倍角公式以及同角三角函數(shù)的基本關(guān)系將弦化切,代入求值即可.【詳解】解:解得故選:【點睛】本題考查三角恒等變換以及同角三角函數(shù)的基本關(guān)系,屬于中檔題.4、D【解析】根據(jù)角度制與弧度制的關(guān)系求解.【詳解】因為,所以.故選:D.5、C【解析】先分析出的奇偶性,再得出的單調(diào)性,由單調(diào)性結(jié)合奇偶性解不等式得到,再利用均值不等式可得答案.【詳解】的定義域滿足,由,所以在上恒成立.所以的定義域為則所以,即為奇函數(shù).設(shè),由上可知為奇函數(shù).當(dāng)時,,均為增函數(shù),則在上為增函數(shù).所以在上為增函數(shù).又為奇函數(shù),則在上為增函數(shù),且所以在上為增函數(shù).所以在上為增函數(shù).由,即所以對任意實數(shù)x恒成立即,由當(dāng)且僅當(dāng),即時得到等號.所以故選:C6、D【解析】由菱形ABCD平面內(nèi),則對角線,又,可得平面,進而可得,又顯然,PA與BD不在同一平面內(nèi),可判斷其位置關(guān)系.【詳解】假設(shè)PA與BD共面,根據(jù)條件點和菱形ABCD都在平面內(nèi),這與條件相矛盾.故假設(shè)不成立,即PA與BD異面.又在菱形ABCD中,對角線,,,則且,所以平面平面.則,所以PA與BD異面且垂直.故選:D【點睛】本題考查異面直線的判定和垂直關(guān)系的證明,屬于基礎(chǔ)題.7、D【解析】利用扇形面積計算公式、弧長公式及其圓的面積計算公式即可得出【詳解】設(shè)圓錐的底面半徑為r=2,母線長為R,其側(cè)面展開后扇形的圓心角等于θ由題意可得:,解得R=4又2π×2=Rθ∴θ=π故選D【點睛】本題考查了扇形面積計算公式、弧長公式及其圓的面積計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題8、B【解析】先利用誘導(dǎo)公式把化成,就把原式化成了兩角和余弦公式,解之即可.【詳解】由可知,故選:B9、A【解析】∵∴∴∴故選A10、A【解析】由誘導(dǎo)公式計算出函數(shù)值后判斷詳解】,,,故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由三角函數(shù)定義可直接得到結(jié)果.【詳解】的終邊過點,故答案為:.12、②③④【解析】①③④選項可以舉出反例;②可以進行證明.【詳解】①例如,定義域為,存在,對于任意,都有,但在上不單調(diào)遞增,①錯誤;②因為是單調(diào)增函數(shù),所以存在,使得對于任意,都有,因為,,所以,故,即存在實數(shù),使得對于任意,都有,故是單調(diào)增函數(shù),②正確;③,定義域為,當(dāng)時,對任意的,都有,即成立,所以是單調(diào)增函數(shù),③正確;④當(dāng)時,,若,則,顯然不滿足,故不是單調(diào)增函數(shù),④正確.故答案為:②③④13、【解析】算出弦心距后可計算弦長【詳解】圓的標(biāo)準(zhǔn)方程為:,圓心到直線的距離為,所以,填【點睛】圓中弦長問題,應(yīng)利用垂徑定理構(gòu)建直角三角形,其中弦心距可利用點到直線的距離公式來計算14、①.##②.【解析】根據(jù)對數(shù)函數(shù)的定義域求出x的取值范圍即可;結(jié)合對數(shù)復(fù)合型函數(shù)的單調(diào)性與一次函數(shù)的單調(diào)性即可得出結(jié)果.【詳解】由題意知,,得,即函數(shù)的定義域為;又函數(shù)在定義域上單調(diào)增函數(shù),而函數(shù)在上單調(diào)遞減,所以函數(shù)為減函數(shù),故.故答案為:;15、【解析】作出函數(shù)的圖象以及直線的圖象,利用對數(shù)的運算可求得的值,利用正弦型函數(shù)的對稱性可求得的值,即可得解.【詳解】作出函數(shù)的圖象以及直線的圖象如下圖所示:由圖可知,由可得,即,所以,,可得,當(dāng)時,,由,可得,由圖可知,點、關(guān)于直線對稱,則,因此,.故答案為:.16、【解析】由函數(shù)圖像關(guān)于對稱,可得函數(shù)是偶函數(shù),由當(dāng)時,恒成立,可得函數(shù)在上為增函數(shù),從而將轉(zhuǎn)化為,進而可求出取值范圍【詳解】因為函數(shù)圖像關(guān)于對稱,所以函數(shù)是偶函數(shù),所以可轉(zhuǎn)化為因為當(dāng)時,恒成立,所以函數(shù)在上為增函數(shù),所以,解得,所以取值范圍為,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)條件選擇見解析,答案見解析;(2)條件選擇見解析,答案見解析.【解析】(1)根據(jù)所選方案,直接求出的解析式,根據(jù)對數(shù)的真數(shù)大于零可求得函數(shù)的定義域;(2)根據(jù)所選方案,結(jié)合二次不等式和對數(shù)函數(shù)的單調(diào)性可得出原不等式的解集.【小問1詳解】解:若選①,,由,解得,故函數(shù)定義域為;若選②,,易知函數(shù)定義域為.【小問2詳解】解:若選①,由(1)知,,因為在上單調(diào)遞增,且,所以,解得或.所以不等式的解集為;若選②,由(1)知,,令,即,解得,即,因為在上單調(diào)遞增,且,,所以.所以不等式的解集為.18、(1)證明見解析(2)【解析】本題主要考查直線與平面、點到面的距離,考查空間想象能力、推理論證能力(1)證明:∵點E為的中點,且為直徑∴,且∴∵FC∩AC=C∴BE⊥平面FBD∵FD∈平面FBD∴EB⊥FD(2)解:∵,且∴又∵∴∴∵∴∵∴∴∴點到平面的距離點評:立體幾何問題是高考中的熱點問題之一,從近幾年高考來看,立體幾何的考查的分值基本是20分左右,其中小題一兩題,解答題19、(1);(2)【解析】(1)設(shè)二次函數(shù)f(x)=ax2+bx+c,利用待定系數(shù)法即可求出f(x);(2)利用一元二次不等式的解法即可得出【詳解】(1).設(shè)二次函數(shù)f(x)=ax2+bx+c,∵函數(shù)f(x)滿足f(x+1)﹣f(x)=2x,f(x+1)-f(x)=-=2ax+a+b=2x,解得.且f(0)=1.c=1∴f(x)=x2﹣x+1(2)不等式f(x)>2x+5,即x2﹣x+1>2x+5,化為x2﹣3x﹣4>0化為(x﹣4)(x+1)>0,解得x>4或x<﹣1∴原不等式的解集為【點睛】本題考查了用待定系數(shù)法求二次函數(shù)的解析式和一元二次不等式的解法,熟練

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論