石家莊幼兒師范高等??茖W(xué)?!度A為HCIA-GausDB應(yīng)用開(kāi)發(fā)實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
石家莊幼兒師范高等??茖W(xué)?!度A為HCIA-GausDB應(yīng)用開(kāi)發(fā)實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
石家莊幼兒師范高等??茖W(xué)校《華為HCIA-GausDB應(yīng)用開(kāi)發(fā)實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
石家莊幼兒師范高等??茖W(xué)?!度A為HCIA-GausDB應(yīng)用開(kāi)發(fā)實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
石家莊幼兒師范高等??茖W(xué)?!度A為HCIA-GausDB應(yīng)用開(kāi)發(fā)實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)石家莊幼兒師范高等專科學(xué)?!度A為HCIA-GausDB應(yīng)用開(kāi)發(fā)實(shí)訓(xùn)》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行缺失值處理,同時(shí)考慮數(shù)據(jù)的分布特征,以下哪種方法較為合適?()A.隨機(jī)森林插補(bǔ)B.基于聚類(lèi)的插補(bǔ)C.基于回歸的插補(bǔ)D.以上都不是2、在數(shù)據(jù)庫(kù)設(shè)計(jì)中,若要存儲(chǔ)學(xué)生的課程成績(jī),以下哪種數(shù)據(jù)類(lèi)型較為合適?()A.整數(shù)型B.浮點(diǎn)型C.字符型D.日期型3、假設(shè)要分析某電商平臺(tái)用戶的購(gòu)買(mǎi)行為隨時(shí)間的變化趨勢(shì),以下哪種可視化方法較為合適?()A.折線圖B.柱狀圖C.餅圖D.箱線圖4、在進(jìn)行數(shù)據(jù)分析項(xiàng)目時(shí),與業(yè)務(wù)部門(mén)的有效溝通是至關(guān)重要的。假設(shè)數(shù)據(jù)分析團(tuán)隊(duì)得出的結(jié)論與業(yè)務(wù)部門(mén)的預(yù)期不符,以下哪種做法可能是最恰當(dāng)?shù)模浚ǎ〢.堅(jiān)持?jǐn)?shù)據(jù)分析結(jié)果,要求業(yè)務(wù)部門(mén)接受B.重新檢查分析過(guò)程,看是否存在錯(cuò)誤C.與業(yè)務(wù)部門(mén)深入討論,了解他們的需求和關(guān)注點(diǎn)D.放棄當(dāng)前分析,按照業(yè)務(wù)部門(mén)的意見(jiàn)修改結(jié)論5、數(shù)據(jù)分析中的數(shù)據(jù)探索不僅包括數(shù)值型數(shù)據(jù),也包括類(lèi)別型數(shù)據(jù)。假設(shè)要分析一個(gè)包含職業(yè)信息的類(lèi)別型數(shù)據(jù)集,以下哪種方法可能有助于了解不同職業(yè)的分布情況?()A.計(jì)算每個(gè)職業(yè)的頻數(shù)B.繪制職業(yè)的直方圖C.進(jìn)行職業(yè)的聚類(lèi)分析D.以上方法都可以6、假設(shè)要分析某網(wǎng)站不同頁(yè)面的訪問(wèn)量分布情況,以下哪種圖表能夠直觀地展示訪問(wèn)量的集中程度和離散程度?()A.直方圖B.箱線圖C.小提琴圖D.以上都不是7、數(shù)據(jù)分析中的數(shù)據(jù)集成涉及將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)要整合來(lái)自不同部門(mén)的銷(xiāo)售數(shù)據(jù)、庫(kù)存數(shù)據(jù)和客戶數(shù)據(jù),這些數(shù)據(jù)格式不一致且存在重復(fù)和沖突。以下哪種數(shù)據(jù)集成方法在處理這種復(fù)雜的數(shù)據(jù)整合問(wèn)題時(shí)更能確保數(shù)據(jù)的一致性和準(zhǔn)確性?()A.基于ETL工具的集成B.手動(dòng)編寫(xiě)代碼進(jìn)行集成C.直接合并數(shù)據(jù),忽略沖突D.隨機(jī)選擇部分?jǐn)?shù)據(jù)進(jìn)行集成8、在數(shù)據(jù)分析中,數(shù)據(jù)可視化是一種重要的手段。以下關(guān)于數(shù)據(jù)可視化的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù)B.數(shù)據(jù)可視化可以通過(guò)圖表、圖形等形式展示數(shù)據(jù)的特征和趨勢(shì)C.數(shù)據(jù)可視化只適用于大型數(shù)據(jù)集,對(duì)于小數(shù)據(jù)集沒(méi)有太大作用D.數(shù)據(jù)可視化可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性9、假設(shè)正在分析一個(gè)網(wǎng)站的用戶行為數(shù)據(jù),以優(yōu)化網(wǎng)站布局。以下關(guān)于用戶行為分析的描述,正確的是:()A.只關(guān)注用戶的點(diǎn)擊次數(shù),就能了解用戶的興趣和偏好B.頁(yè)面停留時(shí)間越短,說(shuō)明用戶對(duì)該頁(yè)面越感興趣C.分析用戶的訪問(wèn)路徑可以發(fā)現(xiàn)網(wǎng)站的熱門(mén)頁(yè)面和流程瓶頸D.用戶的注冊(cè)信息對(duì)分析用戶行為沒(méi)有幫助10、在時(shí)間序列數(shù)據(jù)分析中,除了預(yù)測(cè)未來(lái)值,還可以進(jìn)行季節(jié)性分析。假設(shè)我們有一個(gè)銷(xiāo)售數(shù)據(jù)的時(shí)間序列,顯示出明顯的季節(jié)性特征,以下哪種方法可以用于提取和分析季節(jié)性成分?()A.季節(jié)指數(shù)法B.移動(dòng)平均季節(jié)分解法C.加法模型D.以上都是11、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣的方法有很多,其中隨機(jī)抽樣是一種常用的方法。以下關(guān)于隨機(jī)抽樣的描述中,錯(cuò)誤的是?()A.隨機(jī)抽樣可以保證樣本的代表性和隨機(jī)性B.隨機(jī)抽樣可以減少數(shù)據(jù)的數(shù)量和復(fù)雜度C.隨機(jī)抽樣可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性D.隨機(jī)抽樣只適用于大規(guī)模數(shù)據(jù)集,對(duì)于小數(shù)據(jù)集無(wú)法使用12、在進(jìn)行數(shù)據(jù)分析時(shí),數(shù)據(jù)采樣是一種常見(jiàn)的技術(shù)。假設(shè)要從一個(gè)大規(guī)模的數(shù)據(jù)集中抽取樣本進(jìn)行分析,以下關(guān)于數(shù)據(jù)采樣的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.隨機(jī)采樣能夠保證每個(gè)數(shù)據(jù)點(diǎn)被抽取的概率相等,具有較好的代表性B.分層采樣可以根據(jù)某些特征將數(shù)據(jù)集分層,然后從各層中抽取樣本,以確保樣本的多樣性C.采樣的樣本量越大,分析結(jié)果就越接近總體的真實(shí)情況,但也會(huì)增加計(jì)算成本D.數(shù)據(jù)采樣可以隨意進(jìn)行,不需要考慮數(shù)據(jù)的分布和特征13、在數(shù)據(jù)挖掘中,以下哪種算法常用于對(duì)客戶進(jìn)行分類(lèi),以實(shí)現(xiàn)精準(zhǔn)營(yíng)銷(xiāo)?()A.決策樹(shù)算法B.聚類(lèi)算法C.關(guān)聯(lián)規(guī)則挖掘算法D.神經(jīng)網(wǎng)絡(luò)算法14、在數(shù)據(jù)挖掘中,若要發(fā)現(xiàn)數(shù)據(jù)中隱藏的模式和關(guān)聯(lián)規(guī)則,以下哪種算法是常用的?()A.Apriori算法B.KNN算法C.SVM算法D.隨機(jī)森林算法15、在數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘中,以下關(guān)于支持度和置信度的說(shuō)法,錯(cuò)誤的是()A.支持度表示項(xiàng)集在數(shù)據(jù)集中出現(xiàn)的頻率,用于衡量規(guī)則的普遍性B.置信度表示在包含前提條件的事務(wù)中同時(shí)包含結(jié)論的概率,用于衡量規(guī)則的可靠性C.通常情況下,支持度和置信度越高,關(guān)聯(lián)規(guī)則越有價(jià)值D.只關(guān)注支持度或置信度其中一個(gè)指標(biāo)就可以確定有效的關(guān)聯(lián)規(guī)則,另一個(gè)指標(biāo)可以忽略16、數(shù)據(jù)分析中的特征選擇旨在從眾多特征中挑選出最有價(jià)值的特征。假設(shè)要從一組高度相關(guān)的特征中進(jìn)行選擇,以下哪種方法可能是合適的?()A.基于相關(guān)性的特征選擇B.基于遞歸消除的特征選擇C.基于隨機(jī)森林的特征重要性評(píng)估D.以上方法都可以17、在數(shù)據(jù)分析中,數(shù)據(jù)分析的方法有很多,其中聚類(lèi)分析是一種常用的方法。以下關(guān)于聚類(lèi)分析的描述中,錯(cuò)誤的是?()A.聚類(lèi)分析可以將數(shù)據(jù)分為不同的類(lèi)別,使得同一類(lèi)中的數(shù)據(jù)具有相似的特征B.聚類(lèi)分析的結(jié)果可以用聚類(lèi)中心和聚類(lèi)半徑來(lái)表示C.聚類(lèi)分析可以用于數(shù)據(jù)的分類(lèi)和預(yù)測(cè)D.聚類(lèi)分析的算法有多種,如k-means聚類(lèi)、層次聚類(lèi)等18、數(shù)據(jù)分析中的回歸分析用于建立變量之間的定量關(guān)系。假設(shè)要建立一個(gè)線性回歸模型來(lái)預(yù)測(cè)氣溫對(duì)空調(diào)銷(xiāo)量的影響。如果模型的殘差呈現(xiàn)出明顯的非線性模式,可能表明什么?()A.應(yīng)該使用非線性回歸模型來(lái)改進(jìn)預(yù)測(cè)效果B.數(shù)據(jù)中存在異常值,需要進(jìn)行處理C.模型的擬合效果很好,無(wú)需進(jìn)一步改進(jìn)D.收集的數(shù)據(jù)不足以進(jìn)行有效的分析19、在數(shù)據(jù)清洗過(guò)程中,若發(fā)現(xiàn)數(shù)據(jù)存在異常值,以下哪種處理方式較為合理?()A.直接刪除異常值B.對(duì)異常值進(jìn)行修正C.將異常值視為缺失值處理D.分析異常值產(chǎn)生的原因后再?zèng)Q定處理方式20、數(shù)據(jù)分析中的數(shù)據(jù)質(zhì)量評(píng)估需要從多個(gè)方面衡量數(shù)據(jù)的優(yōu)劣。假設(shè)要評(píng)估一個(gè)收集的市場(chǎng)調(diào)研數(shù)據(jù)的質(zhì)量,包括準(zhǔn)確性、完整性、一致性和時(shí)效性等方面。以下哪種數(shù)據(jù)質(zhì)量評(píng)估指標(biāo)在綜合評(píng)估數(shù)據(jù)質(zhì)量時(shí)更具全面性和客觀性?()A.數(shù)據(jù)質(zhì)量得分B.數(shù)據(jù)質(zhì)量矩陣C.數(shù)據(jù)質(zhì)量報(bào)告D.以上方法效果相同二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)說(shuō)明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的版本控制和數(shù)據(jù)溯源,解釋其重要性和實(shí)現(xiàn)的方法,并舉例說(shuō)明在實(shí)際項(xiàng)目中的應(yīng)用。2、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的降采樣和升采樣?請(qǐng)說(shuō)明它們的目的和方法,并舉例說(shuō)明其應(yīng)用場(chǎng)景。3、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的緩慢變化維的處理方法,如直接覆蓋、添加新行等,并說(shuō)明如何根據(jù)業(yè)務(wù)需求選擇合適的處理方式。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某連鎖酒店收集了各分店的入住率、客戶評(píng)價(jià)、價(jià)格等數(shù)據(jù)。分析不同分店的經(jīng)營(yíng)狀況,制定定價(jià)和營(yíng)銷(xiāo)策略,提升整體業(yè)績(jī)。2、(本題5分)某在線課程平臺(tái)收集了學(xué)生的課程完成率、作業(yè)提交情況、教師評(píng)價(jià)等。研究怎樣借助這些數(shù)據(jù)評(píng)估課程質(zhì)量和教師教學(xué)效果。3、(本題5分)某智能家居公司掌握了產(chǎn)品銷(xiāo)售數(shù)據(jù)、用戶使用習(xí)慣、售后反饋等。改進(jìn)產(chǎn)品功能和服務(wù),滿足用戶對(duì)智能家居的需求。4、(本題5分)某辦公用品電商平臺(tái)擁有商品銷(xiāo)售數(shù)據(jù)、企業(yè)采購(gòu)行為、市場(chǎng)趨勢(shì)等。分析企業(yè)辦公用品的采購(gòu)需求,提供定制化服務(wù)。5、(本題5分)某電影制作公司掌握了電影的票房數(shù)據(jù)、觀眾評(píng)價(jià)、社交媒體熱度等信息。探討怎樣利用這些數(shù)據(jù)指導(dǎo)電影的選題和制作決策。四、論述題(本大題共2個(gè)小題,共20分)1、(本題10分)游戲行業(yè)利用數(shù)據(jù)分析

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論