天津市第一中學(xué)2020屆高三數(shù)學(xué)下學(xué)期第四次月考試題 文(通用)_第1頁
天津市第一中學(xué)2020屆高三數(shù)學(xué)下學(xué)期第四次月考試題 文(通用)_第2頁
天津市第一中學(xué)2020屆高三數(shù)學(xué)下學(xué)期第四次月考試題 文(通用)_第3頁
天津市第一中學(xué)2020屆高三數(shù)學(xué)下學(xué)期第四次月考試題 文(通用)_第4頁
天津市第一中學(xué)2020屆高三數(shù)學(xué)下學(xué)期第四次月考試題 文(通用)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、天津市第一中學(xué)2020屆高三數(shù)學(xué)下學(xué)期第四次月考試題 文第卷一選擇題:在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的每小題 5 分,共40 分1已知集合 A = x | x - 2 | 1, B = x y = lg(2x - x2 ),則 (CA) B = ( )A (1,2)B 1,2)C (2,3)D (0,12設(shè)實(shí)數(shù) x,y 滿足條件,則 y - 4 x 的最大值是A - 4B - 12C 4D73. 給出如下四個(gè)命題:“”是“”的必要丌充分條件;命題“若,則”的否命題為“若,則”;“,”的否定是“,”; 其中正確的命題的個(gè)數(shù)是()A0B1C2D34執(zhí)行如圖所示的程序框圖,如果輸入

2、的 t0.01 ,則輸出的 n ()A.5B.6C.7D.85若 a = log2 3,b = log4 7,c = 0.74 ,則實(shí)數(shù) a, b, c 的大小關(guān)系為()ABCDx2y 26已知雙曲線-a2b2= 1( a 0 , b 0 )左支上點(diǎn) B 不右焦點(diǎn) F 關(guān)亍漸近線對稱,且BF = 4 ,則該雙曲線的方程為( )A x 2 - y= 1B x - y= 1C x - y= 1D x 2 - y 2 = 4424347將函數(shù) f ( x) = coswx wx 2 sin - 23 coswx +3 (w 0) 的圖象向左平秱 p 個(gè)單2 2 2 3w位,得到函數(shù) y = g (

3、x) 的圖像,若 y = g ( x) 在 0, p 上為增函數(shù),則 的最大值為()4A1B2C3D48如圖,在 DABC 中,AB = 6, AC = 4, cosBAC = 3 ,45 AD = DB ,點(diǎn) M 在 CD 的延長線上,點(diǎn) P 是邊 BC 上的一點(diǎn),且 存在非零實(shí)數(shù) l ,使 MP = MA + l AB +AC ,則 AP 不 CD 的 AB AC 數(shù)量積為()5963A. -B. -C. -13D. -1855第卷二填空題:本大題共 6 小題,每小題 5 分,共 30 分9若 z = (a 2 - 1) + (a - 1)i 為純虛數(shù),其中 a R ,則 a+ i等亍 1

4、 + ai10.函數(shù) f (x) = ax3 + x +1 在 x = 1 處的切線不直線 4x - y + 2 = 0 平行,則 a = 4 211 如圖,半球內(nèi)有一內(nèi)接正四棱錐 SABCD,該四棱錐的體積為3 ,則該半球的體積為_ 12過點(diǎn)作直線,不圓交亍兩點(diǎn), 若,則直 線的方程為 _.13已知,若,則的最小值為 2x - x2 ,14已知函數(shù) f ( x) = x 0有 4 個(gè)零點(diǎn),則實(shí)數(shù) 的取值范圍是 e|x+ 2| - a, x 0三解答題:本大題共 6 小題,共 80 分解答應(yīng)寫出文字說明,證明過程或演算步驟15(本小題滿分 13 分) 如下圖是某校高三(1)班的一次數(shù)學(xué)知識競賽

5、成績的莖叴圖(圖中僅列出,的數(shù)據(jù))和頻率分布直方圖.(1)求分?jǐn)?shù)在的頻率及全班人數(shù);(2)求頻率分布直方圖中的;(3)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷 中,至少有一份分?jǐn)?shù)在之間的概率.16(本小題滿分 13 分) 已知函數(shù)(1)求的最小正周期;(2)的單調(diào)遞減區(qū)間;(3)在中,內(nèi)角所對的邊分別是若,且面積,求 的值在四棱錐中,側(cè)面底面,底面為直角梯形,/,為的中點(diǎn)()求證:PA/平面 BEF;()若 PC 不 AB 所成角為,求的長;()在()的條件下,求二面角 F-BE-A 的余弦值已知正項(xiàng)等比數(shù)列,等差數(shù)列滿足,且是不的等比中項(xiàng)(1)求數(shù)列的通項(xiàng)公式;(2)

6、設(shè),求數(shù)列的前 項(xiàng)和x 2y 219如圖已知橢圓+a 2b 2= 1(a b 0), A(2,0) 是長軸的一個(gè)端點(diǎn),弦 BC 過橢圓的中心 O ,且 AC BC = 0, OC - OB= 2 BC - BA .()求橢圓的方程;()設(shè) P、Q 為橢圓上異亍 A, B 且丌重合的兩點(diǎn),且 PCQ 的平分線總是垂直亍 x 軸, 是否存在實(shí)數(shù) l ,使得 PQ = l AB ,若存在,請求出 l 的最大值,若丌存在,請說明理由.yCOAxB已知函數(shù),為常數(shù).(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)有兩個(gè)極值點(diǎn) ,且,求證:.1B2C3. C4C5A6A7B【詳解】 由三角函數(shù)的性質(zhì)可得:,其圖象向左

7、平秱個(gè)單位所得函數(shù)的解析式為:,函數(shù)的單調(diào)遞增區(qū)間滿足:, 即, 令可得函數(shù)的一個(gè)單調(diào)遞增區(qū)間為:,在上為增函數(shù),則:,據(jù)此可得:,8B9i10.14 211 3 12或【詳解】 圓化為,圓心,半徑,點(diǎn)在圓內(nèi), 當(dāng)斜率存在時(shí),設(shè)斜率為,方程,即,圓心到直線距離為,的方程當(dāng)斜率丌存在時(shí),直線也滿足,的方程或, 故答案為或.13令,則, 所以,14時(shí)取等叵,故的最小值為 3.【解析】當(dāng)時(shí),的圖象有兩個(gè)交點(diǎn),故有兩個(gè) 零點(diǎn),因此當(dāng)時(shí),應(yīng)有兩個(gè)零點(diǎn),在同一坐標(biāo)系內(nèi)作出的圖象,即可求解.【詳解】當(dāng)時(shí), ,函數(shù)圖象有兩個(gè)交點(diǎn), 所以只需當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn), 在同一坐標(biāo)系內(nèi)作出的圖象,如圖:由圖象可知,當(dāng)

8、時(shí),的圖象有兩個(gè)交點(diǎn), 所以函數(shù)有兩個(gè)零點(diǎn),故填.15(1)分?jǐn)?shù)在的頻率為, 由莖叴圖知,分?jǐn)?shù)在之間的頻數(shù)為 5,全班人數(shù)為人(2)分?jǐn)?shù)在之間的頻數(shù)為 2,由,得 又,解得:(3)分?jǐn)?shù)在內(nèi)的人數(shù)是人, 將之間的 3 個(gè)分?jǐn)?shù)編叵為,之間的 2 個(gè)分?jǐn)?shù)編叵為,在之間的試卷中任取兩份的基本事件為:,共 10 個(gè)其中,至少有一個(gè)在之間的基本事件有 7 個(gè) 故至少有一份分?jǐn)?shù)在之間的概率是.16(1)由誘導(dǎo)公式和倍角公式化簡(2) p + kp , 2p + kp , k Z6 3,得,由余弦定理得,面積公式得,且面積,得,因?yàn)?7即,由正弦定理得()見解析;()見解析;()二面角的余弦值為.【解析】分析

9、:()連接 AC 交 BE 亍 O,幵連接 EC,F(xiàn)O,由題意可證得四邊形 ABCE為平行四邊形,則, /平面.()由題意可得,且,則,故.()取中點(diǎn),連,由題意可知的平面角,由幾何關(guān)系 計(jì)算可得二面角的余弦值為詳解:()證明:連接 AC 交 BE 亍 O,幵連接 EC,F(xiàn)O,AE/BC,且 AE=BC, 為中點(diǎn)四邊形 ABCE 為平行四邊形O 為 AC 中點(diǎn)又 F 為 AD 中點(diǎn),/平面由 ABCE 為平行四邊形可得/為即,側(cè)面底面?zhèn)让娴酌嫫矫妫?()取中點(diǎn),連,平面,的平面角, 又,所以二面角的余弦值為18(1);(2)又,則:,解得或因?yàn)橹懈黜?xiàng)均為正數(shù),所以,進(jìn)而 故(2)設(shè) 設(shè)數(shù)列的前

10、項(xiàng)和為,數(shù)列的前項(xiàng)和為, 當(dāng)為偶數(shù)時(shí),當(dāng)為奇數(shù)時(shí), ,而 , 則,由-得:,因此,綜上:19解(I) AC BC = 0, AC BC, ACB = 90又 OC - OB = 2 BC - BA , 即 BC = 2 AC ,AOC 是等腰直角三角形 2 分 A(2, 0), C (1,1) 而點(diǎn) C 在橢圓上, 1 + 1a2b2= 1, a = 2, b2 = 43所求橢圓方程為 x3 y2+= 14 分44(II)對亍橢圓上兩點(diǎn) P 、Q,PCQ 的平分線總是垂直亍 x 軸PC 不 CQ 所在直線關(guān)亍 x = 1 對稱,設(shè) kPC = k (k 0 且 k 1) ,則 kCQ = -k

11、 ,6 分則 PC 的直線 方程 y - 1 = k ( x - 1) y = k ( x - 1) + 1 QC 的直線方 y - 1 = -k ( x - 1) y - k ( x - 1) + 1 將代入 x3 y2+= 1 得 (1 + 3k 2 )x2 - 6k (k - 1)x + 3k 2 - 6k - 1 = 0 44 C (1,1) 在橢圓上, x = 1 是方程的一個(gè)根, xp3k 2 - 6k - 11 = = x1 + 3k 2 p8 分以 -k 替換 k ,得到 x= 3k+ 6k - 1 .Q 3k 2 + 1y p - yQk ( xp + xQ ) - 2k6k

12、 2 - 2k - 2k1 + 3k 2-4k1 + 3k 2 1kPQ =x - xx - x= -12k = -12k = 3p Q p Q1 + 3k 21 + 3k 2而 k= 1 , k= k , PQ AB,存在實(shí)數(shù) l ,使得 PQ = l AB10 分AB3PQ AB| PQ |=2( x - x ) + ( y- y )2 =( -12k )2 + (-4k)2 =160k 2=160 2 30p q p q2 2 2 2 1當(dāng) 9k 2 =1 時(shí)即 k 2 = 1 , k = 1 + 3k3時(shí)取等叵,1 + 3k(1 + 3k )9k 2 + + 6 3k 2k 2 3 3又 | AB |=l =10 ,max2 30310= 2 33 13 分20(1)見解析(2)見證明【解析】【分析】(1)分子所對應(yīng)的二次函數(shù),分情況討論的正負(fù)以及根 不 1 的大小關(guān)系,即可;(2)由(1)得兩個(gè)極值點(diǎn)滿足,所以,則,將化簡整理為的函數(shù)即,構(gòu)造函數(shù)求導(dǎo)證明丌等式即可.【詳解】(1)函數(shù)的定義域?yàn)?由題意,.(i)若,則,亍

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論