全排列與逆序數(shù)課件_第1頁
全排列與逆序數(shù)課件_第2頁
全排列與逆序數(shù)課件_第3頁
全排列與逆序數(shù)課件_第4頁
全排列與逆序數(shù)課件_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2 全排列及其逆序數(shù),主要內(nèi)容: 一、全排列 二、排列的逆序數(shù),1,學習交流PPT,2 全排列及其逆序數(shù),例 123,321,132,312,213,231都是元素1,2,3的排列, P332 1 6. 由上例可推知Pn n!,定義:把考察的對象稱為元素.例如:數(shù)字1,2,3.,定義:把n個不同的元素排成一列,叫做這n個元素的全排列(簡稱排列).,n個元素的所有排列的種數(shù)用Pn表示.,2,學習交流PPT,2 全排列及其逆序數(shù),定義:對于n個不同的元素,規(guī)定各元素之間有一個標準次序(通常規(guī)定由小到大為標準次序). 例 123 是元素1,2,3的標準次序 定義: 在這n個元素的任一排列中,當某兩個

2、元素的先后次序與標準次序不同時就說有1個逆序. 逆序 逆序 例 132 213,3,學習交流PPT,2 全排列及其逆序數(shù),定義: 一個排列中所有逆序的總數(shù)稱為這個排列的逆序數(shù). 逆序 例 312 逆序,定義:逆序數(shù)為奇數(shù)的排列叫做奇排列, 逆序數(shù)為偶數(shù)的排列叫做偶排列.,此排列的逆序數(shù)為1+1=2.,4,學習交流PPT,2 全排列及其逆序數(shù),計算排列逆序數(shù)的方法 分別計算出排列中每個元素前面比它大的數(shù)碼個數(shù)之和,即算出排列中每個元素的逆序數(shù),這每個元素的逆序數(shù)之總和即為所求排列的逆序數(shù).,5,學習交流PPT,2 全排列及其逆序數(shù),例 求排列3241的逆序數(shù) 解: 3排在首位,逆序數(shù)為0; 2的前面比2大的數(shù)有一個數(shù)3,故逆序為1; 4是最大數(shù),逆序為0; 1的前面比1大的數(shù)有3個數(shù)3、2、4,故逆序數(shù)為3. 于是,這個排列的逆序數(shù)為t=0+1+0+3=4, 排列3241為偶排列.,6,學習交流PPT,2 全排列及其逆序數(shù),總結(jié) 1.n個不同的元素的所有排列種數(shù)為n!. 2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論