大學高等數(shù)學等價無窮小_第1頁
大學高等數(shù)學等價無窮小_第2頁
大學高等數(shù)學等價無窮小_第3頁
大學高等數(shù)學等價無窮小_第4頁
大學高等數(shù)學等價無窮小_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、這個問題很多人都搞不明白,很多自認為明白的人也不負責任地說一句“乘除可以,加減不行”,包括不少高校教師。其實這種講法是不對的!關鍵是要知道其中的道理,而不是記住結論。1.做乘除法的時候一定可以替換,這個大家都知道。如果f(x)u(x),g(x)v(x),那么lim f(x)/g(x) = lim u(x)/v(x)。關鍵要記住道理lim f(x)/g(x) = lim f(x)/u(x) * u(x)/v(x) * v(x)/g(x)其中兩項的極限是1,所以就順利替換掉了。2.加減法的時候也可以替換!但是注意保留余項。f(x)u(x)不能推出f(x)+g(x)u(x)+g(x),這個是很多人說

2、不能替換的原因,但是如果你這樣看:f(x)u(x)等價于f(x)=u(x)+o(f(x),那么f(x)+g(x)=u(x)+g(x)+o(f(x),注意這里是等號,所以一定是成立的!問題就出在u(x)+g(x)可能因為相消變成高階的無窮小量,此時余項o(f(x)成為主導,所以不能忽略掉。當u(x)+g(x)的階沒有提高時,o(f(x)仍然是可以忽略的。比如你的例子,ln(1+x)+x是可以替換的,因為ln(1+x)+x=x+o(x)+x=2x+o(x),所以ln(1+x)+x和2x是等價無窮小量。但是如果碰到ln(1+x)-x,那么ln(1+x)+x=x+o(x)-x=o(x),此時發(fā)生了相消

3、,余項o(x)成為了主導項。此時這個式子仍然是成立的!只不過用它來作為分子或分母的極限問題可能得到不定型而無法直接求出來而已。碰到這種情況也不是說就不能替換,如果你換一個高階近似:ln(1+x)=x-x2/2+o(x2)那么ln(1+x)-x=-x2/2+o(x2)這個和前面ln(1+x)-x=o(x)是相容的,但是是更有意義的結果,此時余項o(x2)可以忽略。也就是說用x-x2/2作為ln(1+x)的等價無窮小量得到的結果更好。從上面的例子就可以看出來,余項很重要,不能直接扔掉,因為余項當中包含了一定的信息。而且只要保留余項,那么所做的就是恒等變換(注意上面我寫的都是等式)而不是近似,這種方

4、法永遠是可行的,即使得到不定型也不可能得出錯誤的結論。等你學過帶余項的Taylor公式之后對這一點就會有更好的認識。高數(shù)教了一段時間了,對于等價無窮小量代換法求極限為什么只能在乘除中使用,而不能在加減的情況下使用的條件感到有些疑惑,于是找了一些資料,仔細的研究了這個問題,整理如下:等價無窮小的定義及常用的等價無窮小無窮小量是指某變化過程中極限為0的變量。而等價無窮小量是指在某變化過程中比值極限為1的兩個無窮小量。常用的等價無窮小有:sinxtanxarctanxarcsinxln(1+x)x(x0)sinxtanxarctanxarcsinxln(1+x)x(x0)1cosxx22,1+xn1

5、xn(x0)1cosxx22,1+xn1xn(x0)等價無窮小量在求極限問題中非常重要。恰當?shù)氖褂玫葍r無窮小量代換常常使極限問題大大簡化。但是有時卻不能使用等價無窮小量代換。等價無窮小替換原理定理1:設,1,1,1,1是某一變化過程中的無窮小量,且1,11,1,若limlim存在,則lim=lim11lim=lim11。例1:limx0ln(1+3x)sin2x.limx0ln(1+3x)sin2x.解:limx0ln(1+3x)sin2x=limx03x2x=32.limx0ln(1+3x)sin2x=limx03x2x=32.例2:limx0tanxsinxx3.limx0tanxsinx

6、x3.錯誤解法:limx0tanxsinxx3=limx0xxx3=0.limx0tanxsinxx3=limx0xxx3=0.正確解法:limx0tanxsinxx3=limx0sinx(1cosx)x3cosx=limx01cosxx2cosx=limx012cosx=12.limx0tanxsinxx3=limx0sinx(1cosx)x3cosx=limx01cosxx2cosx=limx012cosx=12.從上面的解法可以看出,該題分子不能直接用等價無窮小量替代來做,下面我們分析產(chǎn)生錯誤的原因:等價無窮小之間本身一般并不相等,它們之間一般相差一個較它們高階的無窮小,由函數(shù)f(x)f

7、(x)在點x=0x=0處的泰勒公式,即麥克勞林公式:f(x)=f(0)+f(0)x+f”(0)2!x2+f(n)(0)n!xn+o(xn)f(x)=f(0)+f(0)x+f”(0)2!x2+f(n)(0)n!xn+o(xn)很容易有:tanx=x+x33+2x515+o(x5).(x0)tanx=x+x33+2x515+o(x5).(x0)sinx=x+x33!+x55!+x77!+(1)m1x2m1(2m1)!+o(x2m1).(x0)sinx=x+x33!+x55!+x77!+(1)m1x2m1(2m1)!+o(x2m1).(x0)由此可知,sinx與tanx相差一個較xx的三階無窮小,此

8、三階無窮小與分母x3x3相比不可忽略,因為把上述結論代入原式得limx0tanxsinxx3=limx0x33+x33!+o(x3)x3=12.limx0tanxsinxx3=limx0x33+x33!+o(x3)x3=12.由此,我們可以得出:加減情況下不能隨便使用等價無窮小。下面我們給出一個在加減情況下使用等價無窮小的定理并加以證明。在這里我們只討論減的情況,因為我們知道加上一個數(shù)可以看成減去這個數(shù)的負數(shù)。為方便,首先說明下面的定理及推論中的無窮小量其自變量都是xx,其趨近過程都相同:x0x0,在有關的極限中都省去了極限的趨近過程。定理2:設,1,1,1,1是某一變化過程中的無窮小量,且1

9、,11,1,則1111的充分必要條件是lim=k1lim=k1。證明:11充分性:1,1lim1=lim1=11,1lim1=lim1=1又lim=k1,lim11=k1lim=k1,lim11=k1則lim11=lim11111=k1k1=1lim11=lim11111=k1k1=1即11.11.22必要性:,11lim11=1,11lim11=1即lim(111)=0lim(111)=0通分得lim111lim111=0lim111lim111=0所以lim1111lim11111=0lim1111lim11111=0又lim1=1,lim1=1lim1=1,lim1=1所以lim011l

10、im0111=0lim011lim0111=0所以lim11=k1lim11=k1lim11=k1lim11=k1又lim=lim11.lim=lim11.所以lim=k1,lim11=k1.lim=k1,lim11=k1.由1,21,2得,原命題成立。證畢。這樣一來,就得到了差形式無窮小量等價代換的充要條件。例3:limx01cosx+2sinxarcsin2xsinx.limx01cosx+2sinxarcsin2xsinx.解:1cosxx22,2sinx2x,2arcsinx2x,sinxx(x0)1cosxx22,2sinx2x,2arcsinx2x,sinxx(x0)所以limx0

11、1cosx2sinx=01,limx02arcsinxsinx=21limx01cosx2sinx=01,limx02arcsinxsinx=21由定理2得limx01cosx+2sinxarcsin2xsinx=limxx22+2xx=2.limx01cosx+2sinxarcsin2xsinx=limxx22+2xx=2.例4:limx0arctan2x+arcsin5xsin3x.limx0arctan2x+arcsin5xsin3x.解:arctan2x2x,arcsin5x5x,sin3x3x(x0)arctan2x2x,arcsin5x5x,sin3x3x(x0)又limarctan2xarcsin5x=251limarctan2xarcsin5x=251

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論