高中數(shù)學(xué)完整講義——排列與組合4.排列數(shù)組合數(shù)的計(jì)算與證明.docx_第1頁(yè)
高中數(shù)學(xué)完整講義——排列與組合4.排列數(shù)組合數(shù)的計(jì)算與證明.docx_第2頁(yè)
高中數(shù)學(xué)完整講義——排列與組合4.排列數(shù)組合數(shù)的計(jì)算與證明.docx_第3頁(yè)
高中數(shù)學(xué)完整講義——排列與組合4.排列數(shù)組合數(shù)的計(jì)算與證明.docx_第4頁(yè)
高中數(shù)學(xué)完整講義——排列與組合4.排列數(shù)組合數(shù)的計(jì)算與證明.docx_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高中數(shù)學(xué)講義排列數(shù)組合數(shù)的計(jì)算與證明知識(shí)內(nèi)容1基本計(jì)數(shù)原理加法原理分類計(jì)數(shù)原理:做一件事,完成它有類辦法,在第一類辦法中有種不同的方法,在第二類辦法中有種方法,在第類辦法中有種不同的方法那么完成這件事共有種不同的方法又稱加法原理乘法原理分步計(jì)數(shù)原理:做一件事,完成它需要分成個(gè)子步驟,做第一個(gè)步驟有種不同的方法,做第二個(gè)步驟有種不同方法,做第個(gè)步驟有種不同的方法那么完成這件事共有種不同的方法又稱乘法原理加法原理與乘法原理的綜合運(yùn)用如果完成一件事的各種方法是相互獨(dú)立的,那么計(jì)算完成這件事的方法數(shù)時(shí),使用分類計(jì)數(shù)原理如果完成一件事的各個(gè)步驟是相互聯(lián)系的,即各個(gè)步驟都必須完成,這件事才告完成,那么計(jì)算完成這件事的方法數(shù)時(shí),使用分步計(jì)數(shù)原理分類計(jì)數(shù)原理、分步計(jì)數(shù)原理是推導(dǎo)排列數(shù)、組合數(shù)公式的理論基礎(chǔ),也是求解排列、組合問(wèn)題的基本思想方法,這兩個(gè)原理十分重要必須認(rèn)真學(xué)好,并正確地靈活加以應(yīng)用2 排列與組合排列:一般地,從個(gè)不同的元素中任取個(gè)元素,按照一定的順序排成一列,叫做從個(gè)不同元素中取出個(gè)元素的一個(gè)排列(其中被取的對(duì)象叫做元素)排列數(shù):從個(gè)不同的元素中取出個(gè)元素的所有排列的個(gè)數(shù),叫做從個(gè)不同元素中取出個(gè)元素的排列數(shù),用符號(hào)表示排列數(shù)公式:,并且全排列:一般地,個(gè)不同元素全部取出的一個(gè)排列,叫做個(gè)不同元素的一個(gè)全排列的階乘:正整數(shù)由到的連乘積,叫作的階乘,用表示規(guī)定:組合:一般地,從個(gè)不同元素中,任意取出個(gè)元素并成一組,叫做從個(gè)元素中任取個(gè)元素的一個(gè)組合組合數(shù):從個(gè)不同元素中,任意取出個(gè)元素的所有組合的個(gè)數(shù),叫做從個(gè)不同元素中,任意取出個(gè)元素的組合數(shù),用符號(hào)表示組合數(shù)公式:,并且組合數(shù)的兩個(gè)性質(zhì):性質(zhì)1:;性質(zhì)2:(規(guī)定)排列組合綜合問(wèn)題解排列組合問(wèn)題,首先要用好兩個(gè)計(jì)數(shù)原理和排列組合的定義,即首先弄清是分類還是分步,是排列還是組合,同時(shí)要掌握一些常見類型的排列組合問(wèn)題的解法:1特殊元素、特殊位置優(yōu)先法元素優(yōu)先法:先考慮有限制條件的元素的要求,再考慮其他元素;位置優(yōu)先法:先考慮有限制條件的位置的要求,再考慮其他位置;2分類分步法:對(duì)于較復(fù)雜的排列組合問(wèn)題,常需要分類討論或分步計(jì)算,一定要做到分類明確,層次清楚,不重不漏3排除法,從總體中排除不符合條件的方法數(shù),這是一種間接解題的方法4捆綁法:某些元素必相鄰的排列,可以先將相鄰的元素“捆成一個(gè)”元素,與其它元素進(jìn)行排列,然后再給那“一捆元素”內(nèi)部排列5插空法:某些元素不相鄰的排列,可以先排其它元素,再讓不相鄰的元素插空6插板法:個(gè)相同元素,分成組,每組至少一個(gè)的分組問(wèn)題把個(gè)元素排成一排,從個(gè)空中選個(gè)空,各插一個(gè)隔板,有7分組、分配法:分組問(wèn)題(分成幾堆,無(wú)序)有等分、不等分、部分等分之別一般地平均分成堆(組),必須除以!,如果有堆(組)元素個(gè)數(shù)相等,必須除以!8錯(cuò)位法:編號(hào)為1至的個(gè)小球放入編號(hào)為1到的個(gè)盒子里,每個(gè)盒子放一個(gè)小球,要求小球與盒子的編號(hào)都不同,這種排列稱為錯(cuò)位排列,特別當(dāng),3,4,5時(shí)的錯(cuò)位數(shù)各為1,2,9,44關(guān)于5、6、7個(gè)元素的錯(cuò)位排列的計(jì)算,可以用剔除法轉(zhuǎn)化為2個(gè)、3個(gè)、4個(gè)元素的錯(cuò)位排列的問(wèn)題1排列與組合應(yīng)用題,主要考查有附加條件的應(yīng)用問(wèn)題,解決此類問(wèn)題通常有三種途徑:元素分析法:以元素為主,應(yīng)先滿足特殊元素的要求,再考慮其他元素;位置分析法:以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置;間接法:先不考慮附加條件,計(jì)算出排列或組合數(shù),再減去不符合要求的排列數(shù)或組合數(shù)求解時(shí)應(yīng)注意先把具體問(wèn)題轉(zhuǎn)化或歸結(jié)為排列或組合問(wèn)題;再通過(guò)分析確定運(yùn)用分類計(jì)數(shù)原理還是分步計(jì)數(shù)原理;然后分析題目條件,避免“選取”時(shí)重復(fù)和遺漏;最后列出式子計(jì)算作答2具體的解題策略有:對(duì)特殊元素進(jìn)行優(yōu)先安排;理解題意后進(jìn)行合理和準(zhǔn)確分類,分類后要驗(yàn)證是否不重不漏;對(duì)于抽出部分元素進(jìn)行排列的問(wèn)題一般是先選后排,以防出現(xiàn)重復(fù);對(duì)于元素相鄰的條件,采取捆綁法;對(duì)于元素間隔排列的問(wèn)題,采取插空法或隔板法;順序固定的問(wèn)題用除法處理;分幾排的問(wèn)題可以轉(zhuǎn)化為直排問(wèn)題處理;對(duì)于正面考慮太復(fù)雜的問(wèn)題,可以考慮反面對(duì)于一些排列數(shù)與組合數(shù)的問(wèn)題,需要構(gòu)造模型典例分析排列數(shù)組合數(shù)的簡(jiǎn)單計(jì)算【例1】 對(duì)于滿足的正整數(shù),( )A B C D【例2】 計(jì)算_【例3】 計(jì)算,;【例4】 計(jì)算_,_【例5】 計(jì)算,;【例6】 計(jì)算,【例7】 已知,求的值【例8】 解不等式【例9】 證明:【例10】 解方程【例11】 解不等式【例12】 解方程:【例13】 解不等式:【例14】 設(shè)表示不超過(guò)的最大整數(shù)(如,),對(duì)于給定的,定義,則當(dāng)時(shí),函數(shù)的值域是( )A B C D【例15】 組合數(shù)恒等于( )A B C D【例16】 已知,求、的值排列數(shù)組合數(shù)公式的應(yīng)用【例17】 已知,求的值【例18】 若,則_【例19】 若,則 【例20】 證明:【例21】 證明:【例22】 求證: 【例23】 證明:【例24】 證明:【例25】 求證:;【例26】 計(jì)算:,【例27】 證明:(其中)【例28】 解方程【例29】 確定函數(shù)的單調(diào)區(qū)間【例30】

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論