已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Computers&OperationsResearch33(2006)15051520/locate/corGeneratingoptimaltwo-sectioncuttingpatternsforrectangularblanksYaodongCui,DongliHe,XiaoxiaSongDepartmentofComputerScience,GuangxiNormalUniversity,Guilin,Guangxi541004,ChinaAbstractThispaperpresentsanalgorithmforgeneratingunconstrainedguillotine-cuttingpatternsforrectangularblanks.Apatternincludesatmosttwosections,eachofwhichconsistsofstripsofthesamelengthanddirection.Thesizesandstripdirectionsofthesectionsmustbedeterminedoptimallytomaximizethevalueoftheblankscut.Thealgorithmusesanimplicitenumerationmethodtoconsiderallpossiblesectionsizes,fromwhichtheoptimalsizesareselected.ItmaysolveallthebenchmarkproblemslistedintheOR-Librarytooptimality.Thecomputationalresultsindicatethatthealgorithmisefcientbothincomputationtimeandinmaterialutilization.Finally,solutionstosomeproblemsaregiven.H170152004ElsevierLtd.Allrightsreserved.Keywords:Guillotine;Optimization;Cuttingstockproblem;Two-dimensionalcutting1. IntroductionTheunconstrainedtwo-dimensionalcuttingproblemistheproblemofcuttingfromasinglerectangularsheetanumberofsmallerrectangularblanks,eachofwhichisofagivensizeandagivenvalue,soastomaximizethevalueoftheblankscut.Thisproblemappearsinthecuttingofsteelsheetsintorequiredsizes,inthecuttingofwoodsheetstomakefurniture,andinseveralotherindustrialareas.Therelatedproblemofminimizingtheamountofwasteproducedbythecuttingcanbeconvertedintothisproblembymakingthevalueofallblanksequaltotheirareas.Correspondingauthor.Fax:+867735812383E-mailaddress:(Y.Cui).0305-0548/$-seefrontmatterH170152004ElsevierLtd.Allrightsreserved.doi:10.1016/j.cor.2004.09.0221506 Y.Cuietal./Computers&OperationsResearch33(2006)15051520Inpracticeitisoftensufcienttoconsideronlyguillotinecuts.Aguillotinecutonarectangleisacutfromoneedgeoftherectangletotheoppositeedgethatisparalleltothetworemainingedges.Werefertotheunconstrainedtwo-dimensionalguillotine-cuttingproblemastheUTDGCP.Young-Gun and Kang 1 pointed out that the UTDGCP should be distinguished from the two-dimensionalguillotine-cuttingstockproblem(TDGCSP).TheTDGCSPistheproblemofcuttingallrequirednumberofsmallrectangularblanksofdifferentsizesfromasetoflargerectangularsheetsatminimumsheetcost.AsolutionoftheTDGCSPconsistsofseveralcuttingpatterns,eachofwhichmaybeconstructedbyanalgorithmfortheUTDGCP.Thelinearprogramming(LP)approachiswidelyusedtosolvetheTDGCSP2.ItsolvestheTDGCSPthroughiteration.AlargenumberofUTDGCPmustbesolvedbeforetheLPapproachndsasolutionclosetooptimal.ThereareseveralexactalgorithmsfortheUTDGCP,suchasthedynamic-programmingproceduresin34,thetree-searchproceduresin57.BecausetheproblemisNPhard,thesealgorithmsarenotadequateforlarge-scaleproblems.TheyarealsonotadequateforconstructingcuttingpatternswhentheLPapproachisusedtosolvetheTDGCSP.Restrictionsonthecuttingpatternsareoftenusedtospeedupthesolutionprocess,suchasthestagedcuttingpatterns3,4.Hi8presentedtwoexactalgorithmsforlarge-scaleunconstrainedtwoandthreestagedcuttingproblems.FayardandZissimopoulos9proposedaheuristicthatselectsanoptimalsubsetof optimal generated strips by solving a sequence of one-dimensional knapsack problems.Althoughrestrictionsmaydecreasethevalueofthecuttingpatterns,theymaycutdownthecomputationtimedrastically.Thispaperputsforwardanewrestrictiononthecuttingpatterns.Itsuggeststheapplicationoftwo-sectionpatterns.Atwo-sectionpatterncontainsatmosttwosections.Allstripsinasectionareofthesamelengthanddirection.Astripiseitherauniformstripthatincludesonlyblanksofthesamesize,orageneralstripconsistingofblanksofdifferentsizes.Anexactalgorithm(referredtoastheTSECalgorithm)forgeneratingoptimaltwo-sectionpatternsisconstructed.Itconsidersallpossiblesectionsizesimplicitlyandndstheoptimalsizesthroughcomparisons.Tocomparethealgorithmwiththealgorithmsfornon-stagedandstagedcuttingpatterns,computationswereperformedonbothbenchmarkproblemsandrandomproblems.TheresultsindicatethattheTSECalgorithmisefcientbothincomputationtimeandinmaterialutilization,andmaysimplifythecuttingprocess.ItshouldbenotedthatthealgorithmpresentedmightbealsoseenasanimprovedversionofthatofFayardandZissimopoulos9.Theiralgorithmusesaseriesofone-dimensionalknapsackproblemsforgeneratingasetofoptimalstripsandthenllstheminthesheetinanoptimalway.Althoughnotdenitelypointedout,theiralgorithmgeneratesonlytwo-sectionpatterns.2. Two-sectionpatterns2.1. NotationandfunctionsTable1listssomenotationandfunctionstobeused.Mostofthemwillbere-introducedwheretheyareusedforthersttime.Thereadermaynditismoreconvenienttolookforthenotationdenitioninthetablethaninthetext.Y.Cuietal./Computers&OperationsResearch33(2006)15051520 1507Table1NotationandfunctionsL,W Lengthandwidthofthestocksheetli,wi,ciLength,widthandvalueoftheithrectangularblank,i =1,2,.,mFX(x) ValueofX-sectionx W inanX-patternFY(x) ValueofY-sectionx W inanX-patternfX(y) ValueofX-sectionL y inaY-patternfY(y) ValueofY-sectionL y inaY-pattern|L| NumberofXbreakpointsbetween0andL|W| NumberofYbreakpointsbetween0andWBXThesetofXbreakpoints, BX=bx,1,bx,2,.,bx,|L|BYThesetofYbreakpoints, BY=by,1,by,2,.,by,|W|u(i,x) ValueofanX-stripx wi,0lessorequalslantxlessorequalslantL,i =1,2,.,mv(i,y) ValueofaY-stripy li,0lessorequalslantylessorequalslantW,i =1,2,.,mint(x) ReturnthemaximumintegernotlargerthanxFig.1.Strips:(a)anX-strip,(b)aY-strip.2.2. StripsAssumethatthedirectionoftheblanksisxed.Thisrestrictionisnotserious,sinceifablankl wcanbecutwitheitherdirection,itmaybetreatedastwodifferentblanksl wandw l,eachofwhichhasaxeddirection.Bothgeneralanduniformstripswillbeconsideredingeneratingtwo-sectionpatterns.Auniformstripcontainsonlyblanksofthesamesizeanddirection.AsshowninFig.1,astripmaybeeitherinXorYdirection.AstripisanX-stripifitisinXdirection;otherwiseitisaY-strip.BlanksinX-stripsareleftjustied,andthoseinY-stripsarebottomjustied.ThestriplengthofanX-stripismeasuredhorizontally,andthestriplengthofaY-stripismeasuredvertically.Onlystripsofwidthequaltoablankwidth(horizontalstrips)orlength(verticalstrips)willbeconsid-ered.Assumethattherearemblanks.Theithblankisofsizeliwi,withliandwibeingpositiveintegers,i =1,2,.,m.ThentheithX-stripisofwidthwi,andtheithY-stripisofwidthli,i =1,2,.,m.1508 Y.Cuietal./Computers&OperationsResearch33(2006)15051520Fig.2.Sections:(a)anX-section,(b)aY-section.Fig.3.X-patterns.Fig.4.Y-patterns.2.3. SectionsStripsinasectionareofthesamedirectionandlength.Thedirectionofthestripsisreferredtoasthesectiondirection.AsectionisanX-sectionifthestripsareinXdirection,otherwiseitisaY-section.Fig.2ashowsanX-sectionandFig.2bshowsaY-section.2.4. Two-sectionpatternsFigs.3and4showallpossiblepatternsthatshouldbeconsidered.Thearrowineachsectionindicatesthedirectionofthesection.Thetwosectionsmaybejustiedeithervertically(Y-pattern)orhorizontally(X-pattern).ThepatternsofFigs.3aand4aareone-sectionpatterns,whicharethespecialcasesoftwo-sectionpatterns.ThepatternofFig.3amaybeseenasatwo-sectionpatterncontainingtwoY-sections,andthepatternofFig.4amaybetakenasatwo-sectionpatternconsistingoftwoX-sections.AssumethatthesheetsizeisLW.ThewidthofanX-sectioninanX-patternisW(Fig.3b),andthelengthofaY-sectioninaY-patternisL(Fig.4b).Y.Cuietal./Computers&OperationsResearch33(2006)15051520 15092.5. Break-pointsManyauthors49haveusednormalsetstodevelopalgorithmsforguillotine-cuttingpatterns.Theelementsofthenormalsetsarereferredtoasbreakpointsinthispaper.Theyaredenedas:X breakpoints: x =msummationdisplayi=1zililessorequalslantL, zigreaterorequalslant0 andinteger,Y breakpoints: y =msummationdisplayi=1ziwilessorequalslantW, zigreaterorequalslant0 andinteger. (1)DenotethesetofallXbreakpointsby BX, BX=bx,1,bx,2,.,bx,|L|,where |L| isthenumberofXbreakpointsbetween0andL,bx,i|L|.Step3. Letx = bx,i,V = FX(x) +maxFX(L x),FY(L x).Gotostep2ifV|W|.Step3. Letx = by,i,V = fY(y) +maxfY(W y),fX(W y).Gotostep2ifV10800U4 48350130 48350130 48350130 0.04 1.66 32.56W1 167751 168289 162279 167751 0.02 0.18 8.91 8280.80W2 37617 37621 37621 37621 0.01 0.03 4.59 1427.35W3 253617 253617 250830 253617 0.06 0.36 23.08 10800W4 378366 378366 377910 0.14 0.71 57.29TheH_3STGcouldnotverifytheoptimalityofproblemsU3andW3becausethatthecomputationtimeforeachproblemwasnotallowedtoexceed3h.ItalsocouldnotsolveproblemsU4andW4forthelargescaleoftheproblemsizes.Theseeightproblemsarealllarge-scaleproblems.Thesheetsizeofthemis45005000,50504070,73506579,73506579,50005000,34272769,75007381,and75007381,respectively.Thenumbersofblanksizesare10,10,20,40,20,20,40,and80respectively.AsmentionedinSection3.6,theTSECalgorithmsactuallygeneratetwoandthree-stagepatterns.v4shouldnotbesmallerthanv2foranyproblem,forthatitisthevalueoftheoptimalthree-stagedpattern.FromTable6weknowthatv4v2forproblemsU1,U2andW1.Therefore,wecanconcludethattheauthormadesomeerrorsinpresentingthecomputationalresultsin8.Tosupportthisconclusion,thetwo-sectionpatternsofthesethreeproblemsaregiveninFigs.68,andtheblankdataincludedareasfollows(forproblemsU1andU2:blankidnumberoftheblanklengthwidth;forproblemW1:blankidnumberoftheblanklengthwidthvalue):U1: 194371490,320237932,1020659921,U2: 3129321107,42598732,575691321,721248747,W1: 1754377312223,915985621564.4.4. ComparisonbetweentheTSECandtheFZalgorithmsBoth the TSEC and the FZ 9 algorithms will generate optimal two-section patterns. The TSECmaybeseenasanimprovedversionoftheFZ.ThethreetechniquesmentionedinSection3.4arenotused by the FZ.We used test problems of Group 8 to test the TSEC and FZ algorithms. The sheetsize is 8000 6000. The blank data are the same as Group 6. The average material utilization is99.98%, which is the same for the two algorithms, because both of them can generate optimal two-section patterns.The average computation time for one problem is 16.23s for the FZ, 1.98s for theTSEC_G. The average number of knapsack problems solved for one problem is 22,787 for the FZ,9542 for the TSEC_G. The average number of strips considered in solving a knapsack problem re-latedtoasectionis30fortheFZ,1.75fortheTSEC_G.WhentheTSEC_Uisapplied,theaveragecomputation time is 0.15s. The average material utilization is 99.97%, which is nearly the same asthat of the TSEC_Gor FZ. Both the TSEC_Gand the TSEC_U are much more time efcient thantheFZ.Y.Cuietal./Computers&OperationsResearch33(2006)15051520 1517Fig.6.ThepatternofproblemU1.Fig.7.ThepatternofproblemU2.BelowwegivethesolutionstotheproblemsinGroup9,whichmaybeusedbyfutureresearchersorpractitionerstotesttheiralgorithms.Thisgroupincludes12problems.Thesheetsizeis80006000.TherstsixproblemsarethoselistedinTable4.ProblemsP7P12areformedbycombiningtheblank1518 Y.Cuietal./Computers&OperationsResearch33(2006)15051520Fig.8.ThepatternofproblemW1.Table7ThecomputationalresultsofGroup9ID m v1v2v3t1t2t3P1 30 47993491 47993491 47992398 21.17 2.01 0.16P2 30 47991116 47991116 47991116 17.49 2.07 0.15P3 30 47987624 47987624 47983659 14.56 1.80 0.16P4 30 47993588 47993588 47993588 18.15 2.00 0.15P5 30 48000000 48000000 48000000 13.87 2.16 0.16P6 30 47997600 47997600 47997600 19.37 2.13 0.16P7 60 48000000 48000000 48000000 38.41 5.91 0.36P8 60 47998064 47998064 47998064 36.94 6.08 0.37P9 60 48000000 48000000 48000000 39.72 6.06 0.35P10 90 48000000 48000000 48000000 50.79 10.52 0.56P11 90 48000000 48000000 48000000 56.15 10.50 0.54P12 180 48000000 48000000 48000000 71.34 19.02 1.10dataoftwoormoreproblemsfromtherstsix.Namely,ProblemID P7 P8 P9 P10 P11 P12Blankdata P1+P2 P3+P4 P5+P6 P1+P2+P3 P4+P5+P6 P1+P2+P3+P4+P5+P6ThecomputationalresultsaresummarizedinTable7,wherev1andt1arethevalueandcomputationtimeoftheFZ,v2andt2arethoseoftheTSEC_G,v3andt3arethoseoftheTSEC_U.Y.Cuietal./Computers&OperationsResearch33(2006)15051520 15195. ConclusionsTheTSECmaygenerateoptimaltwo-sectionpatterns,whichareeithertwo-stageorthree-stagepat-terns. For the small-scale problems tested, the TSEC can solve most of them to optimality, and thesolutionsarenotinferiortothoseoftheoptimalthree-stagepatterns.Formedium-scaleproblems,theTSECcangivesolutionsveryclosetooptimal.FortheproblemsofGroup6,theaveragematerialutilizationisveryclosetooptimal(99.64%vs.99.74%),superiortothatoftheoptimaltwo-stagepatterns(99.64%vs.99.44%),andveryclosetothatoftheoptimalthree-stagepatterns(99.64%vs.99.66%).TheaveragecomputationtimeismuchmoreshorterthanthoseoftheB_OPTandB_3STG.Fortheeightlarge-scaleproblemstested(Group7),theTSECgivessolutionsnotinferiortothoseoftheH_3STG.AlthoughtheTSECwasexecutedonacomputerwithaclockrate19timesofthatusedbyHiff8(1.9GHzvs.0.1GHz),wemaystillinferthatitismoretimeefcientthantheH_3STGfromthehugedifferenceincomputationtimeshowninTable6.ApplyingthethreetechniquesdiscussedinSection3.4makestheTSECmuchmoretimeefcientthan the FZ. These techniques can also be used to improve the H_3STG. We have actually devel-oped an algorithm based on these techniques, which is able to generate optimal three-stage patternsefciently.AcknowledgementsGuangxiScienceFoundationsupportsthisprogramunderthegrantNo.0236017.Theauthorswishtoexpresstheirappreciationtothesupporter.Theauthorsarealsogratefultotheanonymousrefereewhosecommentshelpedtoimproveanearlyversionofthispaper.References1 Young-GunG,KangM-K.Anewupperboundforunconstrainedtwo-dimensionalcuttingandpacking.JournaloftheOperationalResear
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 批發(fā)市場配送服務(wù)協(xié)議
- 配送機(jī)器人運(yùn)維合同協(xié)議
- 委托協(xié)議合同協(xié)議
- 2025下半年武警江西總隊(duì)醫(yī)院社會(huì)招聘5人筆試考試備考試題及答案解析
- 古生態(tài)網(wǎng)絡(luò)研究-洞察及研究
- 觀眾參與度對影視口碑形成的影響研究-洞察及研究
- 物業(yè)管理費(fèi)用預(yù)算合理編制方案
- 公共衛(wèi)生規(guī)劃中的倫理問題探討-洞察及研究
- 國際貿(mào)易收貨地址確認(rèn)協(xié)議
- 高校計(jì)算機(jī)網(wǎng)絡(luò)課程考試大綱及輔導(dǎo)
- 急性中毒的處理與搶救
- 淤泥消納施工方案
- 附表:醫(yī)療美容主診醫(yī)師申請表
- 跌落式熔斷器熔絲故障原因分析
- 2023年全市中職學(xué)校學(xué)生職業(yè)技能大賽
- 畢節(jié)市織金縣化起鎮(zhèn)污水處理工程環(huán)評報(bào)告
- 河流動(dòng)力學(xué)-同濟(jì)大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 倉庫安全管理檢查表
- 嶺南版美術(shù)科五年級上冊期末素質(zhì)檢測試題附答案
- 以執(zhí)業(yè)醫(yī)師考試為導(dǎo)向的兒科學(xué)臨床實(shí)習(xí)教學(xué)改革
- 一年級上冊美術(shù)測試題
評論
0/150
提交評論