外文原版-multiscale_modeling_digimat_to_ansys.pdf_第1頁
外文原版-multiscale_modeling_digimat_to_ansys.pdf_第2頁
外文原版-multiscale_modeling_digimat_to_ansys.pdf_第3頁
外文原版-multiscale_modeling_digimat_to_ansys.pdf_第4頁
外文原版-multiscale_modeling_digimat_to_ansys.pdf_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1|PageCopyrighte-Xstreamengineering,2009Multi-ScaleModelingofCompositeMaterialsandStructureswithDIGIMATtoANSYSDocumentVersion1.0,February2009Copyright,e-Xstreamengineering,2009infoe-Xwww.e-XMaterials:EngineeringPlastics,ReinforcedPlastics.e-XstreamTechnology:DIGIMAT,Digimat-MF,Digimat-FE,DigimattoANSYS,MAP.ComplementaryCAETechnology:Moldflow,Moldex3D,SigmaSoft,ANSYS.Industry:MaterialSuppliers,Automotive,Aerospace,Consumer&IndustrialProducts.TABLEOFCONTENTEXECUTIVESUMMARY.2MaterialMulti-ScaleModeling:anintroduction.2FEHomogenization:anapplicationtonanocomposites.5ModelingFillerClustering,atypicalnanoeffect.5ResultComparison.7FE/MFHCoupledComputation:anapplicationtoanindustrialpart.9ProblemDescription.9MaterialModeling.10SimulationResults.11Bibliography.12LegalNotice.eX,eXdigimatande-Xstreamengineeringareregisteredtrademarksofe-XstreamengineeringSA.Theotherproductandcompanynamesandlogosaretrademarksorregisteredtrademarksoftheirrespectiveowners.2|PageCopyrighte-Xstreamengineering,2009EXECUTIVESUMMARYInthispaper,webrieflyintroducetwomulti-scalemodelingapproaches,namelytheMean-Field(MFH)andFiniteElementHomogenization(FEH)methods.Thesepowerfultechniquesrelatethemicroscopicandmacroscopicstressandstrainfieldswhenmodelingmaterialbehaviorsandhencecancapturetheinfluenceofthematerialmicrostructure(i.e.fiberorientation,fibercontent,fiberlength,etc.)onitsmacroscopicresponse.Toillustratethesetechniques,wealsopresent(i)anapplicationoffiniteelementhomogenizationtoananostructureand(ii)thestudyofaninjectedglassfiberreinforcedplasticneonlightclaspusingfiniteelementcomputationsatthemacroscalecoupledwithMFhomogenizationatthemicroscale.MaterialMulti-ScaleModeling:anintroductionAsamotivatingexample,letusconsideraplasticpartmadeupofathermoplasticpolymerreinforcedwithshortglassfibers.Astypicaloftheinjectionmoldingmanufacturingprocess,thefiberdistributioninsidethefinalproductwillvarywidelyintermsoforientationandlength,seeFigure1.Thecompositematerialwillbebothanisotropicandheterogeneous,whichmakesitextremelydifficulttoperformareliablesimulationoftheproductusingaclassicalapproachbasedonmacroscopicconstitutivemodels.However,apredictivesimulationispossibleviaamulti-scaleapproach,whichcanbedescribedinarathergeneralsettingasfollows.Figure1:Fiberorientationdistributioninaninjectedglassfiber-reinforcedplasticclutchpedal.CourtesyofRhodia&Trelleborg.Letusstudyaheterogeneoussolidbodywhosemicrostructureconsistsofamatrixmaterialandmultiplephasesofso-called“inclusions”,whichcanbeshortfibers,platelets,particles,micro-cavitiesormicro-cracks.Ourobjectiveistopredicttheresponseofthebodyundergivenloadsandboundaryconditions(BCs),basedonitsmicrostructure.Wecandistinguishtwoscales,themicroscopicandmacroscopiclevels,respectively.Theformercorrespondstothescaleoftheheterogeneities,whileatthemacroscale,thesolidcanbeseenaslocallyhomogeneous;seeFigure2.Inpractice,itwouldbecomputationallyimpossibletosolvethemechanicalproblematthefinemicroscale.Therefore,weconsiderthemacroscaleandassumethateachmaterialpointisthecenterofarepresentativevolumeelement(RVE),whichcontainstheunderlyingheterogeneousmicrostructure.Classicalsolidmechanicsanalysisiscarriedoutatthemacroscale,exceptthatateachcomputationpoint,strainorstressvaluesaretransmittedasBCstotheunderlyingRVE.Inotherwords,anumericalzoomisrealizedateachmacropoint.TheRVEproblemsaresolvedandeachofthemreturnsstressandstiffnessvalues,whichareusedatthemacroscale.3|PageCopyrighte-Xstreamengineering,2009Figure2:Illustrationofthemulti-scalematerialmodelingapproach,afterNemat-NasserandHori(1).Nowtheonlydifficultyinthistwo-scales(andmoregenerallymulti-scale)approachistosolvetheRVEproblems.ItcanbeshownthatforaRVEunderclassicalBCs,themacrostrainsandstressesareequaltothevolumeaveragesovertheRVEoftheunknownmicrostrainandstressfieldsinsidetheRVE.Inlinearelasticity,relatingthosetwomeanvaluesgivestheeffectiveoroverallstiffnessofthecompositeatthemacroscale.InordertosolvetheRVEproblem,onecanusethewell-knownfiniteelement(FE)method,seeFigures7to10.Thismethodofferstheadvantagesofbeingverygeneralandextremelyaccurate.However,ithastwomajordrawbackswhichare:seriousmeshingdifficultiesforrealisticmicrostructuresandalargeCPUtimefornonlinearproblems,suchasforinelasticmaterialbehaviour.Anothercompletelydifferentmethodismean-fieldhomogenization(MFH),whichisbasedonassumedrelationsbetweenvolumeaveragesofstressorstrainfieldsineachphaseofaRVE;seeFigure3.ComparedtothedirectFEmethod,andactuallytoallotherexistingscaletransitionmethods,MFHisboththeeasiesttouseandthefastestintermsofCPUtime.However,twoshortcomingsofMFHarethatitisunabletogivedetailedstrainandstressfieldsineachphaseanditisrestrictedtoellipsoidalinclusionshapes.Figure3:Mean-fieldhomogenizationprocess:(i)localstrainsarecomputedbasedonthemacrostrains,(ii)localstressesarecomputedbasedonthelocalstrainsandaccordingtoeachphaseconstitutivemodel,and(iii)macrostressesarecomputedbyaveragingthelocalstresses.4|PageCopyrighte-Xstreamengineering,2009AtypicalexampleofMFHistheMori-Tanakamodel(2)whichissuccessfullyapplicabletotwo-phasecompositeswithidenticalandalignedellipsoidalinclusions.ThemodelassumesthateachinclusionoftheRVEbehavesasifitwerealoneinaninfinitebodymadeoftherealmatrixmaterial.TheBCsinthesingleinclusionproblemcorrespondtothevolumeaverageofthestrainfieldinthematrixphaseoftherealRVE.ThesingleinclusionproblemwassolvedanalyticallybyJ.D.Eshelby(3)inalandmarkpaper,whichisthecornerstoneofMFHmodels.Figure4:SchematicoftheMori-Tanakahomogenizationprocedure.Mori-TanakaandotherMFHmodelsweregeneralizedtoothercases,suchasthermoelasticcoupling,two-phasecompositeswithmisalignedfibers(usingamulti-stepapproach)ormulti-phasecomposites(usingamulti-levelmethod).ThepredictionshavebeenextensivelyverifiedagainstdirectFEsimulationofRVEsorvalidatedagainstexperimentalresults.Asageneralconclusion,itwasfoundthatinlinear(thermo)elasticity,MFHcangiveextremelyaccuratepredictionsofeffectiveproperties,althoughfordistributedorientations,progressinclosureapproximationwillbewelcomed.NotealsothatMFHcanbeusedforUD,andforeachyarninwovencomposites.AnimportantandstillongoingeffortbothintheoreticalmodelingandincomputationalmethodsisthegeneralizationofMFHtothematerialorgeometricnonlinearrealms.Suchextensioninvolvessomemajordifficulties.Thefirstoneislinearization,whereconstitutiveequationsatmicroscaleneedtobelinearizedontolinearelastic-orthermoelastic-likeformat.Thesecondissueisthedefinitionofso-calledcomparisonmaterialswhicharefictitiousmaterialsdesignedtopossessuniforminstantaneousstiffnessoperatorsi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論