已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
IntJAdvManufTechnol(2000)16:6356422000Springer-VerlagLondonLimitedThePre-ProcessingofDataPointsforCurveFittinginReverseEngineeringMing-ChihHuangandChing-ChihTaiDepartmentofMechanicalEngineering,TatungUniversity,Taipei,TaiwanReverseengineeringhasbecomeanimportanttoolforCADmodelconstructionfromthedatapoints,measuredbyacoordi-natemeasuringmachine(CMM),ofanexistingpart.Amajorprobleminreverseengineeringisthatthemeasuredpointshavinganirregularformatandunequaldistributionarediffi-culttofitintoaB-splinecurveorsurface.Thepaperpresentsamethodforpre-processingdatapointsforcurvefittinginreverseengineering.TheproposedmethodhasbeendevelopedtoprocessthemeasureddatapointsbeforefittingintoaB-splineform.TheformatofthenewdatapointsregeneratedbytheproposedmethodissuitablefortherequirementsforfittingintoasmoothB-splinecurvewithagoodshape.Theentireprocedureofthismethodinvolvesfiltering,curvatureanalysis,segmentation,regressing,andregeneratingsteps.Themethodisimplementedandusedforapracticalapplicationinreverseengineering.TheresultofthereconstructionprovestheviabilityoftheproposedmethodforintegrationwithcurrentcommercialCADsystems.Keywords:Curvefitting;Pre-processingofdatapoints;Reverseengineering1.IntroductionWiththeprogressinthedevelopmentofcomputerhardwareandsoftwaretechnology,theconceptofcomputer-aidedtech-nologyforproductdevelopmenthasbecomemorewidelyacceptedbyindustry.Thegapbetweendesignandmanufactur-ingisnowbeinggraduallynarrowedthroughthedevelopmentofnewCADtechnology.Inanormalautomatedmanufacturingenvironment,theoperationsequenceusuallystartsfromproductdesignviageometricmodelscreatedinCADsystems,andendswiththegenerationofmachininginstructionsrequiredtoconvertrawmaterialintoafinishedproduct,basedonthegeometricmodel.Torealisetheadvantagesofmoderncom-Correspondenceandoffprintrequeststo:Ming-ChihHuang,Depart-mentofMechanicalEngineering,TatungUniversity,40ChungshanNRoad,3rdSection,Taipei104,Taiwan.E-mail:mindyK.twputer-aidedtechnologyintheproductdevelopmentandmanu-facturingprocess,ageometricmodeloftheparttobecreatedintheCADsystemisrequired.However,therearesomesituationsinproductdevelopmentinwhichaphysicalmodelorsampleisproducedbeforecreatingtheCADmodel:1.Whereaclaymodel,forexample,indesigningautomobilebodypanels,ismadebythedesignerorartistbasedonconceptualsketchesofwhatthepanelshouldlooklike.2.Whereasampleexistswithouttheoriginaldrawingordocumentationdefinition.3.WheretheCADmodelrepresentingtheparthastoberevisedowingtodesignchangeduringmanufacturing.Inallofthesesituations,thephysicalmodelorsamplemustbereverseengineeredtocreateorrefinetheCADmodel.Incontrasttothisconventionalmanufacturingsequence,reverseengineeringtypicallystartswithmeasuringanexistingphysicalobjectsothataCADmodelcanbededucedinordertoexploittheadvantagesofCADtechnologies.Theprocessofreverseengineeringcanusuallybesubdividedintothreestages,i.e.datacapture,datasegmentationandCADmodellingand/orupdating1,2.Aphysicalmock-uporprototypeisfirstmeasuredbyacoordinatemeasuringmachineoralaserscannertoacquirethegeometricinformationintheformof3Dpoints.Themeasuredresultsarethensegmentedintotopologicalregionsforfurtherprocessing.Eachregionrepresentsasinglegeometricfeaturethatcanberepresentedmathematicallybyasimplesurfaceinthecaseofmodelreconstruction.CADmodellingreconstructsthesurfaceofaregionandcombinesthesesurfacesintoacompletemodelrepresentingthemeasuredpartorprototype3.Inpracticalmeasuringcases,however,therearemanysitu-ationswherethegeometricinformationofaphysicalprototypeorsamplecannotbemeasuredcompletelyandaccuratelytoreconstructagoodCADmodel.Somedatapointsofthemeasuredsurfacemaybeirregular,havemeasurementerrors,orcannotbeacquired.AsshowninFig.1,themainsurfaceofmeasuredobjectmayhavefeaturessuchasholes,islands,orroughnesscausedbymanufacturinginaccuracy,consequentlytheCMMprobecannotcapturethecompletesetofdatapointstoreconstructtheentiresurface.636M.-C.HuangandC.-C.TaiFig.1.Thegeneralproblemsinapracticalmeasuringcase.Measurementofanexistingobjectsurfaceinreverseengin-eeringcanbeachievedbyusingeithercontactprobingornon-contactsensingprobingtechniques.Whatevertechniqueisapplied,therearemanypracticalproblemswithacquiringdatapoints,forexamples,noise,andincompletedata.Withoutextensiveprocessingtoadjustthedatapoints,theseproblemswillcausetheCADmodeltobereconstructedwithanunde-siredshape.InordertorebuildtheCADmodelcorrectlyandsatisfactorily,thispaperpresentsausefulandeffectivemethodtopre-processthedatapointsforcurvefitting.Usingtheproposedmethod,thedatapointsareregeneratedinaspecifiedformat,whichissuitableforfittingintoacurverepresentedinB-splineformwithouttheproblemspreviouslymentioned.Afterfittingallofthecurves,thesurfacemodelcanbecompletedbyconnectingthecurves.2.TheTheoryofB-splineMostofthesurface-basedCADsystemsexpressshapesrequiredformodellingbyparametricequations,suchasinBezierorB-splineforms.ThemostusedistheB-splineform.B-splinesarethestandardforrepresentingfreeformcurvesandsurfacesincurrentcommercialCADsystems.B-splinecurvesandBeziercurveshavemanyadvantagesincommon4.Controlpointsinfluencethecurveshapeinapredictable,naturalway,makingthemgoodcandidatesforuseinaninteractiveenvironment.Bothtypesofcurvearevariationdiminishing,axisindependent,andmultivalued,andbothexhi-bittheconvexhullproperty.However,itisthelocalcontrolofcurveshapewhichispossiblewithB-splinesthatgivesthetechniqueanadvantageovertheBeziertechnique,asdoestheabilitytoaddcontrolpointswithoutincreasingthedegreeofthecurve.Consideringthereal-worldapplicationsrequirement,theB-splinetechniqueisusedtorepresentcurvesandsurfacesinthisresearch.AB-splinecurveisasetofbasisfunctionswhichcombinestheeffectsofn+1controlpoints.AparametricB-splinecurveisgivenbyp(u)=Oni=0piNi,k(u)(0#u#1)(1)Pi=controlpointsn+1=numberofcontrolpointsNi,k(u)=theB-splinebasisfunctionsu=parameterForB-splinecurves,thedegreeofthesepolynomialsiscontrolledbyaparameterkandisusuallyindependentofthenumberofcontrolpoints,andtheB-splinebasisfunctionsaredefinedbythefollowingexpression:Ni,1(u)=H1ifui#u#ui+10otherwise(2)andNi,k(u)=u-uiui+k-uiNi,k-1(u)+ui+k+1-uui+k+1-ui+1Ni+1,k-1(u)(3)Wherekcontrolsthedegree(k-1)oftheresultingpoly-nomialsinuandthusalsocontrolsthecontinuityofthecurve.AB-splinesurfaceisdefinedinasimilarwaytoatensorproductinaB-splinecurve.ItisalsopossibletodefineaB-splinesurfacehavingdifferentdegreesintheu-andv-direc-tions:S(u,v)=Oni=0Omj=0pijNi,p(u)Ni,q(v)(0#u#1)(4)3.CurveFittingGivenasetofdatapointsmeasuredfromexistingobject,curvefittingisrequiredtopassthroughthedatapoints.Theleast-squaresfittingtechniqueisthemostusedalgorithmwhichaimsatapproximating,basedonaniterativemethod,asetofdatapointstoformaB-spline57.GivenasetofdatapointsQk,k=0,1,2,.,n,thatlieonanunknowncurvePforcertainparametervaluesuk,k=0,1,2,.,n;itisnecessarytodetermineanexactinterp-olationorbestfittingcurve,P.Tosolvethisproblem,theparametervalues(uk)foreachofthedatapointsmustbeassumed.Theknotvectorandthedegreeofthecurvearealsodetermined.Thedegreeinpracticalapplicationsisgenerally3(order=4).Theparametervaluescanbedeterminedbythechordlengthmethod:QkP(uk)=Oni=0piNi,p(uk)(k=0,1,.,n)(5)u0=0,ui=Oij=1uQj-Qj-1u.Onj-1uQj-Qj-1u.(6)Giventheparametervalues,aknotvectorthatreflectsthedistributionoftheseparametershasthefollowingform:U=0,0,.,0,V1,V2,.,Vn,1,1,.,1p+1p+1Vj=1pOj+p-1i=jui(j=1,2,.,n-p)(7)Pre-ProcessingofDataPointsforCurveFitting637Fig.2.Curvefittingwithunequaldistributionofdatapoints.Itcanbeprovedthatthecoefficientmatrixistotallypositiveandbandedwithabandwidthoflessthanp,therefore,thelinearsystemcanbesolvedsafelybyGaussianeliminationwithoutpivoting.Ni,p(uk)ui,k=0,.,nEquation(5)canbewritteninamatrixform:QNP(8)whereQisan(m+1)1matrix,Nisan(m+1)(n+1)matrix,andPisan(n+1)1matrix.Sincem.n,thisequationisover-determined.ThesolutionisP*=(NTN)-1NTQ(9)4.TheRequirementforFittingaSetofDataintoaB-SplineCurveInordertoproduceaB-splinecurvewitha“goodshape”,somecharacteristicsarerequiredtofitthedatapointsetintoacurvepresentedinB-splineform.First,thedatapointsmustbeinawell-orderedsequence.WhenapplyingtheprogramtofitasetofdatapointsintoaB-splinecurve,thedatapointsmustbereadonebyoneinaspecifiedorder.Ifthedatapointsarenotinorder,thiswillcauseanundesiredtwistoranout-of-controlshapeoftheB-splinecurve.Secondly,anevendispersionofthedatapointsisbetterforcurvefitting.Inthemeasuringprocedure,somefactors,suchasthevibrationofthemachine,thenoiseinthesystem,andtheroughnessofthesurfaceofthemeasuredobjectwillinfluencetheresultofthemeasurement.Allofthesephenom-enawillcauselocalshakesinthecurvewhichpassesthroughtheproblempoints.Therefore,asmoothgradationofthelocationofthedatapointsisnecessaryforgeneratinga“highquality”B-splinecurve.HavingthedatapointsequallydistributedisimportantforimprovingtheresultofparameterisationforfittingaB-splinecurve.AsthemathematicalpresentationshowsinEq.(9),thecontrolpointsmatrixPisdeterminedbythebasisfunctionsNanddatapointsQ,wherethebasisfunctionsNaredeterminedbytheparametersuiwhicharecorrespondtothedistributionofthedatapoints.Ifthedatapointsaredistributedunequally,thecontrolpointswillalsobedistributedunequallyandwillcausealackofsmoothnessofthefittingcurve.Asmentionedabove,inpracticalmeasuringcases,themainsurfaceFig.3.Curvefittingwithequaldistributionofdatapoints.Fig.4.Theprocedureofdatapointspre-processing.ofaphysicalsampleoftenhassomefeaturessuchasholes,islands,andradiusfillets,whichpreventtheCMMprobefromcapturingdatapointswithequaldistribution.Ifacurveisrebuiltbyfittingdatapointswithanunequaldistribution,asshowninFig.2,thegeneratedcurvemaydifferfromtherealshapeofthemeasuredobject.Figure3illustratesthatasmootherandmoreaccuratereconstructionmaybeobtainedbyfittinganequallyspacedsetofdatapoints.5.ThePre-ProcessingofDataPointsToachievetherequirementsforfittingasetofdatapointsintoaB-splinecurveasmentionedabove,itisveryimportantandnecessarythatthedatapointsmustbepre-processedbeforecurvefitting.Inthefollowingdescription,ausefulandeffectivemethodforpre-processingthedatapointsforcurvefittingispresented.Theconceptofthismethodistoregressasetofmeasuringdatapointsintoanon-parametricequationinimplicitorexplicitform,andthisequationmustalsosatisfytheconti-nuityofthecurvature.Foraplanecurve,theexplicitnon-parametricequationtakesthegeneralform:y=f(x).Figure4638M.-C.HuangandC.-C.TaiFig.5.Curvatureiscalculatedbythreediscretepointsonacircle.illustratesanoverviewoftheproceduretopre-processthedatapointsforreverseengineering.Datapointfilteringisthefirststepindisplacingtheunwantedpointsandthenoisypoints.TheoriginaldatapointsmeasuredfromaphysicalprototypeoranexistingsamplebyaCMMareindiscreteformat.Whenthemeasuredpointsareplottedinadiagram,thenoisypointswhichobviouslydeviatefromtheoriginalcurvecanbeselectedandremovedbyavisualsearchbythedesignerforextensiveprocessing.Inaddition,thedistinctdiscontinuouspointswhichapparentlyrelatetoasharpchangeinshapemayalsobeseparatedeasilyforfurtherprocessing.ManyapproacheshavebeendevelopedforgeneratingaCADmodelfrommeasuredpointsinreverseengineering.Acomplexmodelisusuallyconstructedbysubdividingthecom-pletemodelintoindividualsimplesurfaces8,9.EachoftheindividualsurfacesdefinesasinglefeatureinaCADsystemandacompleteCADmodelisobtainedbyfurthertrimming,blendingandfilleting,orusingothersurface-processingtools.Whenthedesignerisgivenasetofunorganiseddatapointsmeasuredfromanexistingobject,datapointsegmentationisrequiredtoreconstructacompletemodelbydefiningindividualsimplesurfaces.Therefore,curvatureanalysisforthedatapointsisusedforsubdividingthedatapointsintoindividualgroups.InordertoextracttheprofilecurvesforCADmodelrecon-struction,inthisstep,datapointsaredividedintodifferentgroupsdependingupontheresultofcurvaturecalculationandanalysisofthedatapoints.Foreach2Dcurve,y=f(x),thecurvatureisdefinedas:k=d2ydx2F1+SdydxD2G3/2=f1+(f)23/2(10)Ifthedataisexpressedindiscreteform,foranythreeconsecutivepointsinthesameplane(X1,Y1)(X2,Y2)(X3,Y3),thethreepointsformacircleandthecentre(X0,Y0)canbecalculatedas(seeFig.5):X0=a-b+cdY0=e-f+g-dwherea=(X1+X2)(X2-X1)(Y3-Y2)b=(X2+X3)(X3-X2)(Y2-Y1)c=(Y1-Y3)(Y2-Y1)(Y3-Y2)d=2(X2-X1)(Y3-Y2)-(X3-X2)(Y2-Y1)Fig.6.Thefilletofthemodel.Fig.7.Thecurvaturechangeofthefillet.e=(Y1+Y2)(Y2-Y1)(X3-X2)f=(Y2+Y3)(Y3-Y2)(X2-X1)g=(X1-X3)(X2-X1)(X3-X2)And,thecurvaturekof(X2,Y2)canbedefinedas:k=1r=1(X0-X2)2+(Y0-Y2)2)(11)Figure6illustratesanexampleinwhichthecurvaturesofaplanecurveconsistingofadatapointsetarecalculatedusingthepreviousmethod.Thecurvatureofthecurvedeterminedbythedatapointsetchangesfrom0to0.0333,assh
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 護(hù)理學(xué)科前沿動(dòng)態(tài)與探討
- 醫(yī)學(xué)影像診斷與介入治療技術(shù)培訓(xùn)與解析
- 2026年黑龍江民族職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試模擬試題帶答案解析
- 神經(jīng)內(nèi)科護(hù)理操作規(guī)范培訓(xùn)
- 生物醫(yī)療創(chuàng)新項(xiàng)目孵化與投資
- 醫(yī)療器械安全與風(fēng)險(xiǎn)管理
- 互聯(lián)網(wǎng)醫(yī)療與醫(yī)療服務(wù)創(chuàng)新
- 2026年廣東江門(mén)中醫(yī)藥職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試參考題庫(kù)帶答案解析
- 2026年海南經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能筆試模擬試題帶答案解析
- 2026年巴音郭楞職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試模擬試題帶答案解析
- 啟明星籃球培訓(xùn)學(xué)校運(yùn)營(yíng)管理手冊(cè)
- 同位素示蹤技術(shù)與應(yīng)用
- 2022-2023學(xué)年廣東省東莞市九年級(jí)(上)期末數(shù)學(xué)試卷(含解析)
- GB/T 9581-2011炭黑原料油乙烯焦油
- GB/T 18991-2003冷熱水系統(tǒng)用熱塑性塑料管材和管件
- GA/T 947.3-2015單警執(zhí)法視音頻記錄系統(tǒng)第3部分:管理平臺(tái)
- FZ/T 50047-2019聚酰亞胺纖維耐熱、耐紫外光輻射及耐酸性能試驗(yàn)方法
- 市政道路施工總進(jìn)度計(jì)劃表
- (更新版)國(guó)家開(kāi)放大學(xué)電大《機(jī)械制造基礎(chǔ)》機(jī)考網(wǎng)考題庫(kù)和答案
- 2023年新疆文化旅游投資集團(tuán)有限公司招聘筆試模擬試題及答案解析
- aw4.4工作站中文操作指南
評(píng)論
0/150
提交評(píng)論