已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
附錄1翻譯原文及譯文DocNo:P0193-GP-01-1DocName:AnalysisofManufacturingProcessDataUsingQUICKTechnologyTMIssue:1Data:20April,2006Name(Print)SignatureAuthor:D.CliftonReviewer:S.TurnerTableofContents1ExecutiveSummary.41.1Introdution.41.2TechniquesEmployed.41.3SummaryofResults.41.4Observations.52Introdution.62.1OxfordBioSignalsLimited.63ExternalReferences.74Glossary.75DataDescription.75.1Datatypes.75.2PriorExperimentKnowledge.75.3TestDescription.86Pre-processing.96.1RemovalofStart/StopTransients.96.2RemovalofPowerSupplySignal.96.3FrequencyTransformation.97AnalysisI-Visualisation.127.1VisualisationofHigh-DimensionalData.127.2Visualising5-DManufacturingProcessData.錯(cuò)誤!未定義書簽。7.3AutomaticNoveltyDetection.錯(cuò)誤!未定義書簽。7.4ConclusionofAnalysisI-Visualisation.錯(cuò)誤!未定義書簽。8AnalysisII-SignatureAnalysis.錯(cuò)誤!未定義書簽。8.1ConstructingSignatures.錯(cuò)誤!未定義書簽。8.2VisualisingSignatures.錯(cuò)誤!未定義書簽。8.3ConclusionofAnalysisII-SignatureAnalysis.錯(cuò)誤!未定義書簽。9AnalysisIII-TemplateAnalysis.錯(cuò)誤!未定義書簽。9.1ConstructingaTemplateofNormality.錯(cuò)誤!未定義書簽。9.2ResultsofNoveltyDetectionUsingTemplateAnalysis.錯(cuò)誤!未定義書簽。9.3ConclusionofAnalysisIII-TemplateAnalysis.錯(cuò)誤!未定義書簽。10AnalysisIV-None-linearPrediction.錯(cuò)誤!未定義書簽。10.1NeuralNetworksforOn-LinePrediction.錯(cuò)誤!未定義書簽。10.2ResultsofNoveltyDetectionusingNon-linearPrediction.錯(cuò)誤!未定義書簽。10.3ConclusionofAnalysisIV-Non-linearPrediction.錯(cuò)誤!未定義書簽。11OverallConclusion.錯(cuò)誤!未定義書簽。11.1Methodology.錯(cuò)誤!未定義書簽。11.2SummaryofTesults.錯(cuò)誤!未定義書簽。11.3FutureWork.錯(cuò)誤!未定義書簽。12AppendixA-NeuroScaleVisualisations.錯(cuò)誤!未定義書簽。TableofFiguresFigure1-Test90.Fromtoptobottom:Ax,Ay,Az,AE,SPagainsttimet(s)Figure2-PowerspectraforTest19afterremovalof50Hzpowersupplycontribution.Thetopplotshowsa3-D“l(fā)andspace”plotofeachspectrum.Thebottomplotshowsa“contour”plotofthesameinformation,withincreasingsignalpowershownasincreasingcolourfromblacktoredFigure3-PowerspectraforTest19afterremovalofallspectralcomponentsbeneathpowerthresholdFigure4-Azagainsttime(inseconds)forTest19,beforeremovaloflow-powerfrequencycomponentsFigure5-Azagainsttime(inseconds)forTest19,afterremovaloflow-powerfrequencycomponentsFigure6-SPforanexampletest,showingthreeautomatically-detecrminedstates:S1-drillingin(showningreen);S2-drill-bitbreak-throughandremoval(showninred);S3-retraction(showninblue)Figure7-Examplesignatureofvariableyplottedagainstoperating-pointFigure8-Powerspectrafortest51,frequency(Hz)onthex-axisbetween0fs/2Figure9-AveragesignificantfrequencyfuFigure10-VisualisationofAEsignaturesforalltestsFigure11-VisualisationofAxbroadbandsignaturesforalltestsFigure12-VisualisationofAxaverage-frequencysignaturesforalltestsFigure13-NoveltydetectionusingatemplatesignatureFigure14-1ExecutiveSummary1.1IntroductionThepurposeofthisinvestigationconductedbyOxfordBioSignalswastoexamineanddeterminethesuitabilityofitstechniquesinanalyzingdatafromanexamplemanufacturingprocess.ThisreporthasbeensubmittedtoRolls-RoycefortheexpressedofassessingOxfordBioSignalstechniqueswithrespecttomonitoringtheexampleprocess.TheanalysisconductedbyOxfordBioSignals(OBS)waslimitedtoafixedtimescale,afixedsetofchallengedataforasingleprocess(asprovidedbyRolls-RoyceandAachenuniversityofTechnology),withnopriordomainknowledge,norinformationofsystemfailure.1.2TechniquesEmployedOBSusedanumberofanalysistechniquesgiventhelimitedtimescales:I-Visualisation,andClusterAnalysisThispowerfulmethodallowedtheevolutionofthesystemstate(fusingallavailabledatatypes)tobevisualisedthroughouttheseriesoftests.Thisshowedseveraldistinctmodesofoperationduringtheseries,highlightingmajoreventsobservedwithinthedata,latercorrelatedwithactualchangestothesystemsoperationbydomainexperts.Clusteranalysisautomaticallydetectswhichoftheseeventsmaybeconsideredtobe“abnormal”,withrespecttopreviouslyobservedsystembehavior.II-Signaturerepresentseachtestasasinglepointonaplot,allowingchangesbetweenteststobeeasilyidentified.Abnormaltestsareshownasoutlyingpoints,withnormaltestsformingacluster.Modelingthenormalbehaviorofseveralfeaturesselectedfromtheprovideddata,thismethodshowedthatadvancewarningofsystemfailurecouldbeautomaticallydetectedusingthesefeatures,aswellashighlightingsignificanteventswithinthelifeofthesystem.III-TemplateAnalysisThismethodallowsinstantaneoussample-bysamplenoveltydetection,suitableforon-lineimplementation.UsingacomplementaryapproachtoSignatureAnalysis,thismethodalsomodelsnormalsystembehavior.Resultsconfirmedtheobservationmadeusingpreviousmethods.IV-NeuralnetworkPredictorSimilarlyusefulforon-lineanalysis,thismethodusesanautomatedpredictorofsystembehaviour(aneuralnetworkpredictor),inwhichpreviouslyidentified
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年下學(xué)期高一第三次診斷性測試語文答案
- 2025云南昆明醋酸纖維有限公司招聘備考題庫(二)附答案
- 2026年二級(jí)建造師之二建礦業(yè)工程實(shí)務(wù)考試題庫300道含答案【鞏固】
- 2024年民和縣招教考試備考題庫匯編
- 2026年咨詢工程師之宏觀經(jīng)濟(jì)政策與發(fā)展規(guī)劃考試題庫500道附答案(完整版)
- 2026山東商業(yè)集團(tuán)招聘面試題及答案
- 公司往來借款合同范本
- 2026青海機(jī)電國有控股公司招聘面試題及答案
- 重慶水輪機(jī)廠有限責(zé)任公司招聘19人備考題庫及答案1套
- 2025年浙江經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院輔導(dǎo)員招聘備考題庫附答案
- 幼兒園每日消毒及安全管理操作規(guī)范
- 11.1黨和人民信賴的英雄軍隊(duì)課件-2025-2026學(xué)年統(tǒng)編版道德與法治八年級(jí)上冊
- 2025年軍隊(duì)文職保管員題庫及答案(可下載)
- 企業(yè)勞動(dòng)用工風(fēng)險(xiǎn)防范操作指南
- DB37-T 5337-2025 建筑隔震減震裝置檢測技術(shù)規(guī)程
- 立德樹人教育教學(xué)課件
- 餐飲宴會(huì)服務(wù)標(biāo)準(zhǔn)流程全流程管理方案
- 甲方安全技術(shù)交底
- 化療藥物輸注規(guī)范
- 礦山安裝施工方案
- 化工新材料生產(chǎn)線項(xiàng)目社會(huì)穩(wěn)定風(fēng)險(xiǎn)評估報(bào)告
評論
0/150
提交評論