全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
12thIFToMMWorldCongress,Besanon(France),June18-21,2007RevealingofIndependentOscillationsinPlanetaryReducerGearowingtoitssymmetryL.Banakh*Yu.Fedoseev+MechanicalEngineeringResearchInstituteofRussianAcademyofSciencesMoscow,RussiaAbstract-Theplanetaryreducer11gearisasymmetricsystem.Foritsoscillationanalysisthereisappliedthesymmetrygrouprepresentationtheory,whichwasgeneralizedformechanicalsystems.Itwasfoundthatduetoreducersymmetrytheoscillationsdecompositionhasarisen.Thereareindependentoscillationsclasses,suchas:angularoscillationsofsolargearandepicycle-satellitesoscillationsinphase;transversaloscillationsofsolargearandepicycle-satellitesoscillationsinantiphase.Solargearandepicycleoscillationsinaphasedonotdependonangularsatellitesoscillations.Keywords:planetaryreducer,symmetry,grouprepresentationtheory,independentoscillationsI.IntroductionItiswellknownthatattheoperationofplanetaryreducerthereareoscillationsofitselements,suchassolargear,epicycleandsatellites.Thisfactoressentiallyworsensaqualityofreduceroperation,andinsomecasescanresultintheircurvatureandbreakage.Aplentyofpapersaredevotedtothedynamicanalysisofgearreducers1.Basicallytherearecomputationalresearches.Inthegivenpapertheanalyticalapproachesforinvestigationofreducerdynamicsispresented.Theplanetaryreducerhasahighdegreeofsymmetry.Sothispropertywasusedandthegrouprepresentationtheorywasapplied.Applicationofthistheoryallowscarryingoutdeepenoughdynamicanalysis,usingsymmetrypropertiesonly.Forthispurposeitisnecessarytohavethedynamicalmodelwhichistakingintoaccountstiffnesscharacteristicsinlinkagesbetweenreducerelements.Themathematicalapparatusofthesymmetrygroupsrepresentationtheoryiswidelyusedinthequantummechanics,crystallographic,spectroscopy2,3,4.Theadvantagesofthisapproacharedifficultforoverestimating.Withitshelpitispossibletodefinewithexhaustivecompletenessthedynamicproperties,usingstructuresymmetryofsystemonlywithoutsolvingofmotionequations.Howeverintheclassicalmechanicsthisapproachisnotwidelyused.Itisresultfromsomeparticularfeaturesofmechanicalsystems.First,thereisan*E-mail:banlinbox.ruavailabilityofsolidswith6-thdegreesoffreedom.Itisuncleartowhatsymmetrygrouptorelateasolidinorderthatsystemsymmetrymayberetained.Secondatrealdesignsmaybetechnologicalerrorsandmistakesatassembly,sothereisasmallasymmetryandthesystembecomesquasisymmetricFurtherthemechanicalsystemsconsistfromvarioussubsystemswithvarioussymmetrygroups.Inthisconnectionitisnecessarytohavemethodsfortheanalysisassymmetricandquasisymmetricmechanicalsystemsconsistingofvarioussubsystemsandsolids.Havingmadesomegeneralizations,thismathematicalapparatusformechanicalsystemsmaybeused.Forthispurposeweproposetoapplythegeneralizedprojectiveoperators5.Theseoperatorsarematrixesoftheappropriateorderinsteadofscalarasinphysics.Theuseofgeneralizedprojectiveoperatorsallowstakingintoaccountallabovementionedfeaturesofmechanicalsystems.Theapplicationoftheseoperatorstoinitialstiffnessmatrixleadstoitsdecompositiononindependentblockseachofthemcorrespondstoownoscillationclassinindependentsubspaces.Toaccountforthesolidssymmetrytheequivalentpointswereentered:thesepointsarechosenonsolidsothattheirdisplacementswerecompatibletoconnectionsandcorrespondedtogroupofsymmetryofallsystem.Theseoperatorsenablealsomaybeappliedwiththefiniteelementsmodels(FEM).II.Dynamicmodelofplanetaryreducer.Stiffnessmatrix.Themodelofaplanetaryreducerstepissubmittedonfig.16.ThestepconsistsfromsolargearS,itsmassandradiusareequalto11,mr.ItengagesintomeshwiththreesatellitesSti(i=1,2,3)(itsmassesandradiusareidenticalandequalto22,mr).SatellitesinturnareengagedintomeshwithepicycleEp(33,mr)andtheyarefastenoncarrierbyelasticsupportwithrigidityh6.Therigidityofgearingsolargear-satellitesisequalto1h,thegearingepicycle-satellitesis3h,isangleofgearing.12thIFToMMWorldCongress,Besanon(France),June18-21,2007Fig.1Planetaryreducerstep.S-solargear,-epicycle,1,2,3satellites(St).Letsconsideralloveragaintheplaneoscillationsofplanetaryreducerstep:transversal(x,y)andangular()oscillations(withoutthecasing).AstiffnessmatrixmayberepresentedinablockviewK=123123123SSStSStSStStStStStStStKKKKKKKKKKK(1)Hereonthemaindiagonaltherearethestiffnesssubmatrixes(3x3)forappropriateelements,andoutsideofthemaindiagonaltherearestiffnesssubmatrixesofconnectionbetweentheseelements.Thereare15generalizedcoordinates:X=(*,;,SSSEpEpEpxyxy;1113,.StStStStxy)TheconcreteviewoftheseblocksissubmittedinAppendix.Thus,thetotalorderofmatrixKis(15x15).AninertiamatrixMisdiagonal.III.Introductionofequivalentpointsindynamicmodel.Operatorsofsymmetry.Byvirtueofsymmetryofsatellitesfasteningthissubsystemhassymmetrysuchas3C(astriangle).Torevealsymmetry3CatmovingofsolargearSandepicycleEpweshallenterthecoordinates123,lllonsolargearSinpointsofsatellitesfastening(fig.2.).Fig.2EquivalentpointsonsolargearS.1,2,3,-satellitesTheyare“equivalentpoints”.Theircoordinatesare:1111222133312(1)cos3;2(1)sin31,2,3.SSiSSiSSirXriripipi=(2)orinmatrixformL=AXAndanaloguesrelationsfor“equivalentpoints”onepicycle,butinstead1rin(2)mustbewritten3r.Andlateronthesecoordinateofsolargearandepicyclewillbeusedinstead(x,y)and().Afterthatitispossibletocount,thatallcoordinatesofsystemshouldvaryaccordingtosymmetrygroup3Cand,hence,itispossibletoapplytheprojectiveoperatorofsymmetrytoallsystemelements:S,Ep,andalsotothreesatellitesSti(i=1,2,3).(fig.3)Theortho-normalprojectiveoperatorgofsymmetryforpointgroup3Cisknownas2.Itisg=11133312166611022(3)Forthewholesystemtheprojectiveoperatormustberepresentedasblock-diagonalmatrix12thIFToMMWorldCongress,Besanon(France),June18-21,2007G=Stggg(4)HereeachsubmatrixcorrespondstoS,Ep,andalsotothreesatellitesSti(i=1,2,3).SoBecausewehavethreeidenticalsatellitesandeachofthemhas3degreesoffreedom(,iiStStxyandangular.iiStSt),thereforeitisnecessarytoentergeneralizeoperator(3)3,4andtoconsiderStgasblockmatrixwheretheeachelementisdiagonalmatrix(33),thatisitispossibletopresenteachelementasStg=1,11=EgEEEThustoinitialcoordinates,(,)SEpxyofsolargearandepicycleconsistentlytwotransformationsareapplied:AandG.AndresultingtransformationofaninitialmatrixKequalstoproductofoperatorsGA.ThisorthogonaltransformationanditlookslikeG=StgAgAg,wheregA=223300100+Byapplyingofthistransformationtomatrix(1),weshallreceive*=(G)()(G)trSothecorrespondingtransformationsofcoordinatesandforcesareX*=(G),F*=(G)trF(5)AsaresulttheinitialmatrixK(1515)isdividedon3independentblocks(5x5)and,lookinglike,*(1)*(2)=IIIIIKKKK(6)TheinertiamatrixMremainsdiagonalbecausematrixGAisorthogonal;thereforetheindependenceofoscillationclassesdefinesmatrix*only.IV.RevealingofindependentmotionsclassesatfornaturalandforcedoscillationsA.NaturaloscillationsFromtheviewofmatrix(6)itisseen,thatowingtosystemsymmetrythereisadecompositionofinitialmatrixK,and,hence,divisionofoscillationclassesandaswellasspaceofparameters.Theconcreterelationsforsubmatrixesin(6)showthattherearefollowingindependentoscillationsclasses:I-stclass(subspaceI-submatrix*IK):angularoscillationofsolargearandepicycle+oscillationsofsatellitesinaphase.Dimensionofthissubspaceisequalto5.Itsdeterminingparametersare:12313612139,.rrrhhhhrh2-ndclass(subspaceII-submatrixes*(1)IIK(2)*IIK):transversaloscillationsofsolargearandepicycle+oscillationsofsatellitesinanantiphase.SubspaceIIbreaksuptotwoidenticalsubmatrixes*(1)IIKand(2)*IIK(55).Itmeansthatinsystemthereare5equalfrequencies.Itsdeterminingparametersare:213679,.rhhhhhThus,takingintoaccountonlypropertiesofsymmetryitispossibletoreceivedeepenoughanalysisofdynamicpropertiesofsystemofaplanetaryreducer.Besidesitispossibletosimplifyalsoprocessofsystemoptimization.B.ForcedoscillationsAttheforcedoscillationstheuseoftheindependentoscillationclassesissuitableonlyintwocases:a)ifthepointsofapplicationoftheexternalforceshavethesametypeofsymmetry,asadesignhas,orb)iftheyaredisposedaccordingtotheindependentclassesofoscillations.Really,thentransformation(5)bringaforcesvectorF*intoaformcontainingzeroelementsorin1-st,or2-thsubspaces.Theanalysisoftherealloadingsforcesonareducer,shows,thatitisvalidifelementsdisbalancesarethesame:)identicalsatellitesdisbalances+disbalanceofepicycle;)identicalsatellitesdisbalances+disbalanceofsolargear.V.Thefurthermotionsdecomposition.ThefurtherdecompositionofsubspacesIandIIin(6)ispossibleonlyifthereareadditionalconditionsraisingatypeofsystemsymmetry.12thIFToMMWorldCongress,Besanon(France),June18-21,2007Theseconditions,inparticular,canbereceivedfromsimilaritysymmetryofsolargearandepicycle.Theylooklike:1.EqualityofgearingstiffnesswithSandEp,i.e.12hh=,2.EqualityofpartialfrequenciesforangularmotionsSandEp()()SEp=,whence:78hh=,or3.EqualityofpartialfrequenciesattranversalmotionsofSandEp(,)(,)SEpxyxy=,whence:h7=2h9.Sobyfulfillmentofconditions1,2(or1,3)theadditionalsymmetrytype2Cisappeared(reflectionsymmetry).Tothissymmetrygrouptheoperator2G(or2G)iscorresponded2G=11311113;1311rhrh2G=111113213112hhTheapplicationoftheseoperatorstomatrixK*permittoachievethefurtherdecompositionofcorrespondingmatrixesandappropriatemotions.Reallytheymayhavesymmetricandantisymmetricoscillationclassesforsolargearandepicycle.Thusthecoordinatetransformationis:111*3131111*3131SEprrhSEprrh=+=XXXXXXAnd1*3121*312SEphSEph=+=XXXXXXBythiscoordinatetransformationthefollowingindependentmotiontypesarearisen()*()IIIKKKTheconcreterelationsforthesesubmatrixesshowthattherearefollowingindependentoscillationsclasses:Isubspace(matrix*IK):-angularoscillationsofsolargearSandepicycleEpinphase+satellitesS
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湘菜鹵味培訓(xùn)課件設(shè)計圖
- 未來五年交流接觸器企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 未來五年水產(chǎn)學(xué)研究服務(wù)企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略分析研究報告
- 未來五年復(fù)合式路緣石市場需求變化趨勢與商業(yè)創(chuàng)新機(jī)遇分析研究報告
- 未來五年種用油料企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略分析研究報告
- 湘夫人知識背景課件
- 2025合規(guī)管理培訓(xùn)試題及答案
- 2025機(jī)械工程師考試試題及答案
- 醫(yī)療廢物管理試題及答案
- 2025安徽綜合評標(biāo)評審專家?guī)炜荚嚱?jīng)典試題及答案
- 中職高教版(2023)語文職業(yè)模塊-第五單元:走近大國工匠(一)展示國家工程-了解工匠貢獻(xiàn)【課件】
- 文化差異與電影國際合作-洞察分析
- 濃鹽水深度處理及零排放方案
- 黑吉遼2024年高考物理
- 城市照明合同能源管理技術(shù)規(guī)程
- 馬克思主義中國化理論成果
- 永康房地產(chǎn)調(diào)研報告課件
- 甘肅省住院醫(yī)師規(guī)范化培訓(xùn)實施方案
- 讓課堂煥發(fā)生命的活力
- 《赤壁賦》理解性默寫匯編(超詳細(xì))
- 貴州省安順市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細(xì)及行政區(qū)劃劃分代碼居民村民委員會
評論
0/150
提交評論