人教a版高中數(shù)學(xué)必修2第1章空間幾何體全部教案 同步單元測(cè)試卷_第1頁(yè)
人教a版高中數(shù)學(xué)必修2第1章空間幾何體全部教案 同步單元測(cè)試卷_第2頁(yè)
人教a版高中數(shù)學(xué)必修2第1章空間幾何體全部教案 同步單元測(cè)試卷_第3頁(yè)
人教a版高中數(shù)學(xué)必修2第1章空間幾何體全部教案 同步單元測(cè)試卷_第4頁(yè)
人教a版高中數(shù)學(xué)必修2第1章空間幾何體全部教案 同步單元測(cè)試卷_第5頁(yè)
已閱讀5頁(yè),還剩74頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教A版高中數(shù)學(xué)必修2第一章空間幾何體本章教材分析柱體、錐體、臺(tái)體和球體是簡(jiǎn)單的幾何體,復(fù)雜的幾何體大都是由這些簡(jiǎn)單的幾何體組合而成的有關(guān)柱體、錐體、臺(tái)體和球體的研究是研究比較復(fù)雜的幾何體的基礎(chǔ)本章研究空間幾何體的結(jié)構(gòu)特征、三視圖和直觀圖、表面積和體積等運(yùn)用直觀感知、操作確認(rèn)、度量計(jì)算等方法,認(rèn)識(shí)和探索空間幾何圖形及其性質(zhì)本章中的有關(guān)概念,主要采用分析具體實(shí)例的共同特點(diǎn),再抽象其本質(zhì)屬性空間圖形而得到教學(xué)中應(yīng)充分使用直觀模型,必要時(shí)要求學(xué)生自己制作模型,引導(dǎo)學(xué)生直觀感知模型,然后再抽象出有關(guān)空間幾何體的本質(zhì)屬性,從而形成概念本章內(nèi)容是在義務(wù)教育階段學(xué)習(xí)的基礎(chǔ)上展開的例如,對(duì)于棱柱,在義務(wù)教育階段直觀認(rèn)識(shí)正方體、長(zhǎng)方體等的基礎(chǔ)上,進(jìn)一步研究了棱柱的結(jié)構(gòu)特征及其體積、表面積因此,在教材內(nèi)容安排中,特別注意了與義務(wù)教育階段“空間與圖形”相關(guān)內(nèi)容的銜接值得注意的是在教學(xué)中,要堅(jiān)持循序漸進(jìn),逐步滲透空間想象能力面的訓(xùn)練由于受有關(guān)線面位置關(guān)系知識(shí)的限制,在講解空間幾何體的結(jié)構(gòu)時(shí),少問(wèn)為什么,多強(qiáng)調(diào)感性認(rèn)識(shí)要準(zhǔn)確把握這方面的要求,防止拔高教學(xué)重視函數(shù)與信息技術(shù)整合的要求,通過(guò)電腦繪制簡(jiǎn)單幾何體的模型,使學(xué)生初步感受到信息技術(shù)在學(xué)習(xí)中的重要作用為了體現(xiàn)教材的選擇性,在練習(xí)題安排上加大了彈性,教師應(yīng)根據(jù)學(xué)生的實(shí)際,合理地進(jìn)行取舍本章教學(xué)時(shí)間約需7課時(shí),具體分配如下(僅供參考)111柱、錐、臺(tái)、球的結(jié)構(gòu)特征約1課時(shí)112簡(jiǎn)單組合體的結(jié)構(gòu)特征約1課時(shí)121中心投影與平行投影122空間幾何體的三視圖約1課時(shí)123空間幾何體的直觀圖約1課時(shí)131柱體、錐體、臺(tái)體的表面積與體積約1課時(shí)132球的體積和表面積約1課時(shí)本章復(fù)習(xí)約1課時(shí)11空間幾何體的結(jié)構(gòu)111柱、錐、臺(tái)、球的結(jié)構(gòu)特征整體設(shè)計(jì)教學(xué)分析本節(jié)教材先展示大量幾何體的實(shí)物、模型、圖片等,讓學(xué)生感受空間幾何體的結(jié)構(gòu)特征,從整體上認(rèn)識(shí)空間幾何體,再深入細(xì)節(jié)認(rèn)識(shí),更符合學(xué)生的認(rèn)知規(guī)律值得注意的是由于沒(méi)有點(diǎn)、直線、平面的有關(guān)知識(shí),所以本節(jié)的學(xué)習(xí)不能建立在嚴(yán)格的邏輯推理的基礎(chǔ)上,這與以往的教材有較大的區(qū)別,教師在教學(xué)中要充分注意到這一點(diǎn)本節(jié)教學(xué)盡量使用信息技術(shù)等手段,向?qū)W生展示更多具有典型幾何結(jié)構(gòu)特征的空間物體,增強(qiáng)學(xué)生的感受三維目標(biāo)1掌握柱、錐、臺(tái)、球的結(jié)構(gòu)特征,學(xué)會(huì)觀察、分析圖形,提高空間想象能力和幾何直觀能力2能夠描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu),學(xué)會(huì)建立幾何模型研究空間圖形,培養(yǎng)數(shù)學(xué)建模的思想重點(diǎn)難點(diǎn)教學(xué)重點(diǎn)柱、錐、臺(tái)、球的結(jié)構(gòu)特征教學(xué)難點(diǎn)歸納柱、錐、臺(tái)、球的結(jié)構(gòu)特征課時(shí)安排1課時(shí)教學(xué)過(guò)程導(dǎo)入新課思路1從古至今,各個(gè)國(guó)家的建筑物都有各自的特色,古有埃及的金字塔,今有各城市大廈的旋轉(zhuǎn)酒吧、旋轉(zhuǎn)餐廳,還有上海東方明珠塔上的兩個(gè)球形建筑等它們都是獨(dú)具匠心、整體協(xié)調(diào)的建筑物,是建筑師們集體智慧的結(jié)晶今天我們?nèi)绾螐臄?shù)學(xué)的角度來(lái)看待這些建筑物呢引出課題柱、錐、臺(tái)、球的結(jié)構(gòu)特征思路2在我們的生活中會(huì)經(jīng)常發(fā)現(xiàn)一些具有特色的建筑物,你能舉出一些例子嗎這些建筑的幾何結(jié)構(gòu)特征如何引導(dǎo)學(xué)生回憶,舉例和相互交流教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)引出課題柱、錐、臺(tái)、球的結(jié)構(gòu)特征推進(jìn)新課新知探究提出問(wèn)題1觀察下面的圖片,請(qǐng)將這些圖片中的物體分成兩類,并說(shuō)明分類的標(biāo)準(zhǔn)是什么圖12你能給出多面體和旋轉(zhuǎn)體的定義嗎活動(dòng)讓學(xué)生分組討論,根據(jù)初中已有的知識(shí),學(xué)生很快就能分成兩類,對(duì)沒(méi)有思路的學(xué)生,教師予以提示1根據(jù)圍成幾何體的面是否都是平面來(lái)分類2根據(jù)圍成幾何體的面的特點(diǎn)來(lái)定義多面體,利用動(dòng)態(tài)的觀點(diǎn)來(lái)定義旋轉(zhuǎn)體討論結(jié)果1通過(guò)觀察,可以發(fā)現(xiàn),(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)具有同樣的特點(diǎn)組成幾何體的每個(gè)面都是平面圖形,并且都是平面多邊形,像這樣的幾何體稱為多面體;(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)具有同樣的特點(diǎn)組成它們的面不全是平面圖形,像這樣的幾何體稱為旋轉(zhuǎn)體2多面體一般地,由若干個(gè)平面多邊形圍成的幾何體叫做多面體圍成多面體的各個(gè)多邊形叫做多面體的面;相鄰兩個(gè)面的公共邊叫做多面體的棱;棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)按圍成多面體的面數(shù)分為四面體、五面體、六面體、,一個(gè)多面體最少有4個(gè)面,四面體是三棱錐棱柱、棱錐、棱臺(tái)均是多面體旋轉(zhuǎn)體由一個(gè)平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)所形成的封閉幾何體叫做旋轉(zhuǎn)體,這條定直線叫做旋轉(zhuǎn)體的軸圓柱、圓錐、圓臺(tái)、球均是旋轉(zhuǎn)體提出問(wèn)題1與其他多面體相比,圖片中的多面體(5)、(7)、(9)具有什么樣的共同特征2請(qǐng)給出棱柱的定義3與其他多面體相比,圖片中的多面體(14)、(15)具有什么樣的共同特征4請(qǐng)給出棱錐的定義5利用同樣的方法給出棱臺(tái)的定義活動(dòng)學(xué)生先思考或討論,如果學(xué)生沒(méi)有思路時(shí),教師再提示對(duì)于1、3,可根據(jù)圍成多面體的各個(gè)面的關(guān)系來(lái)分析對(duì)于2,利用多面體(5)、(7)、(9)的共同特征來(lái)定義棱柱對(duì)于4,利用多面體(14)、(15)的共同特征來(lái)定義棱錐對(duì)于5,利用圖片中的多面體(13)、(16)的共同特征來(lái)定義棱臺(tái)討論結(jié)果1特點(diǎn)是有兩個(gè)面平行,其余的面都是平行四邊形像這樣的幾何體稱為棱柱2定義兩個(gè)平面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面圍成的多面體稱為棱柱棱柱中,兩個(gè)互相平行的面叫做棱柱的底面;其余各面叫做棱柱的側(cè)面;相鄰側(cè)面的公共邊叫做棱柱的側(cè)棱側(cè)面與底面的公共頂點(diǎn)叫做棱柱的頂點(diǎn)表示法用表示底面各頂點(diǎn)的字母表示棱柱分類按底面多邊形的邊數(shù)分為三棱柱、四棱柱、五棱柱3其中一個(gè)面是多邊形,其余各面是三角形,這樣的幾何體稱為棱錐4定義有一面為多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的多面體叫做棱錐這個(gè)多邊形面叫做棱錐的底面或底;有公共頂點(diǎn)的各個(gè)三角形面叫做棱錐的側(cè)面;各側(cè)面的公共頂點(diǎn)叫做棱錐的頂點(diǎn);相鄰側(cè)面的公共邊叫做棱錐的側(cè)棱表示法用頂點(diǎn)和底面各頂點(diǎn)的字母表示分類按底面多邊形的邊數(shù)分為三棱錐、四棱錐、五棱錐5定義用一個(gè)平行于棱錐底面的平面去截棱錐,底面與截面之間的部分叫做棱臺(tái)原棱錐的底面和截面叫做棱臺(tái)的下底面和上底面;其他各面叫做棱臺(tái)的側(cè)面;相鄰側(cè)面的公共邊叫做棱臺(tái)的側(cè)棱;底面多邊形與側(cè)面的公共頂點(diǎn)叫做棱臺(tái)的頂點(diǎn)表示法用表示底面各頂點(diǎn)的字母表示棱臺(tái)分類按底面多邊形的邊數(shù)分為三棱臺(tái)、四棱臺(tái)、五棱臺(tái)提出問(wèn)題1與其他旋轉(zhuǎn)體相比,圖片中的旋轉(zhuǎn)體(1)、(8)具有什么樣的共同特征2請(qǐng)給出圓柱的定義3其他旋轉(zhuǎn)體相比,圖片中的旋轉(zhuǎn)體(3)、(6)具有什么樣的共同特征4請(qǐng)給出圓錐的定義5類比圓錐和圓柱的定義方法,請(qǐng)給出圓臺(tái)的定義6用同樣的方法給出球的定義討論結(jié)果1靜態(tài)的觀點(diǎn)有兩個(gè)平行的平面,其他的面是曲面;動(dòng)態(tài)的觀點(diǎn)矩形繞其一邊旋轉(zhuǎn)形成的面圍成的旋轉(zhuǎn)體像這樣的旋轉(zhuǎn)體稱為圓柱2定義以矩形的一邊所在的直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的旋轉(zhuǎn)體叫做圓柱旋轉(zhuǎn)軸叫做圓柱的軸;垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的圓面叫做圓柱的底面;平行于軸的邊旋轉(zhuǎn)而成的曲面叫做圓柱的側(cè)面,圓柱的側(cè)面又稱為圓柱面,無(wú)論轉(zhuǎn)到什么位置,不垂直于軸的邊都叫做圓柱側(cè)面的母線表示圓柱用表示軸的字母表示規(guī)定圓柱和棱柱統(tǒng)稱為柱體3靜態(tài)的觀點(diǎn)有一平面,其他的面是曲面;動(dòng)態(tài)的觀點(diǎn)直角三角形繞其一直角邊旋轉(zhuǎn)形成的面圍成的旋轉(zhuǎn)體像這樣的旋轉(zhuǎn)體稱為圓錐4定義以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)而形成的面所圍成的旋轉(zhuǎn)體叫做圓錐旋轉(zhuǎn)軸叫做圓錐的軸;垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的圓面稱為圓錐的底面;不垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的曲面叫做圓錐的側(cè)面,圓錐的側(cè)面又稱為圓錐面,無(wú)論轉(zhuǎn)到什么位置,這條邊都叫做圓錐側(cè)面的母線表示圓錐用表示軸的字母表示規(guī)定圓錐和棱錐統(tǒng)稱為錐體5定義以直角梯形垂直于底邊的腰所在的直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體叫做圓臺(tái)還可以看成是用平行于圓錐底面的平面截這個(gè)圓錐,截面與底面之間的部分旋轉(zhuǎn)軸叫做圓臺(tái)的軸;垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的圓面稱為圓臺(tái)的底面;不垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的曲面叫做圓臺(tái)的側(cè)面,無(wú)論轉(zhuǎn)到什么位置,這條邊都叫做圓臺(tái)側(cè)面的母線表示圓臺(tái)用表示軸的字母表示規(guī)定圓臺(tái)和棱臺(tái)統(tǒng)稱為臺(tái)體6定義以半圓的直徑所在的直線為旋轉(zhuǎn)軸,將半圓旋轉(zhuǎn)一周所形成的曲面稱為球面,球面所圍成的旋轉(zhuǎn)體稱為球體,簡(jiǎn)稱球半圓的圓心稱為球心,連接球面上任意一點(diǎn)與球心的線段稱為球的半徑,連接球面上兩點(diǎn)并且過(guò)球心的線段稱為球的直徑表示用表示球心的字母表示知識(shí)總結(jié)1棱柱、棱錐、棱臺(tái)的結(jié)構(gòu)特征比較,如下表所示結(jié)構(gòu)特征棱柱棱錐棱臺(tái)定義兩個(gè)平面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體稱為棱柱有一面為多邊形,其余各面是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐用一個(gè)平行于棱錐底面的平面去截棱錐,底面與截面之間的部分,這樣的多面體叫做棱臺(tái)底面兩底面是全等的多邊形多邊形兩底面是相似的多邊形側(cè)面平行四邊形三角形梯形側(cè)棱平行且相等相交于頂點(diǎn)延長(zhǎng)線交于一點(diǎn)平行于底面的截面與兩底面是全等的多邊形與底面是相似的多邊形與兩底面是相似的多邊形過(guò)不相鄰兩側(cè)棱的截面平行四邊形三角形梯形2圓柱、圓錐、圓臺(tái)、球的結(jié)構(gòu)特征比較,如下表所示結(jié)構(gòu)特征圓柱圓錐圓臺(tái)球定義以矩形的一邊所在的直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體叫做圓柱以直角三角形的一條直角邊為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體叫做圓錐以直角梯形垂直于底邊的腰所在的直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體叫做圓臺(tái)以半圓的直徑所在的直線為旋轉(zhuǎn)軸,將半圓旋轉(zhuǎn)一周所形成的曲面稱為球面,球面所圍成的幾何體稱為球體,簡(jiǎn)稱球底面兩底面是平行且半徑相等的圓圓兩底面是平行但半徑不相等的圓無(wú)側(cè)面展開矩形扇形扇環(huán)不可展開圖母線平行且相等相交于頂點(diǎn)延長(zhǎng)線交于一點(diǎn)無(wú)平行于底面的截面與兩底面是平行且半徑相等的圓平行于底面且半徑不相等的圓與兩底面是平行且半徑不相等的圓球的任何截面都是圓軸截面矩形等腰三角形等腰梯形圓3簡(jiǎn)單幾何體的分類球圓臺(tái)圓錐圓柱旋轉(zhuǎn)體棱臺(tái)棱錐棱柱多面體簡(jiǎn)單幾何體應(yīng)用示例思路1例1下列幾何體是棱柱的有()圖2A5個(gè)B4個(gè)C3個(gè)D2個(gè)活動(dòng)判斷一個(gè)幾何體是哪種幾何體,一定要緊扣柱、錐、臺(tái)、球的結(jié)構(gòu)特征,注意定義中的特殊字眼,切不可馬虎大意棱柱的結(jié)構(gòu)特征有三方面有兩個(gè)面互相平行;其余各面是平行四邊形;這些平行四邊形面中,每相鄰兩個(gè)面的公共邊都互相平行當(dāng)一個(gè)幾何體同時(shí)滿足這三方面的結(jié)構(gòu)特征時(shí),這個(gè)幾何體才是棱柱很明顯,幾何體均不符合,僅有符合答案D點(diǎn)評(píng)本題主要考查棱柱的結(jié)構(gòu)特征本題容易錯(cuò)認(rèn)為幾何體也是棱柱,其原因是忽視了棱柱必須有兩個(gè)面平行這個(gè)結(jié)構(gòu)特征,避免出現(xiàn)此類錯(cuò)誤的方法是將教材中的各種幾何體的結(jié)構(gòu)特征放在一起對(duì)比,并且和圖形對(duì)應(yīng)起來(lái)記憶,要做到看到文字?jǐn)⑹鼍拖氲綀D,看到圖形就想到文字?jǐn)⑹鲎兪接?xùn)練1下列幾個(gè)命題中,兩個(gè)面平行且相似,其余各面都是梯形的多面體是棱臺(tái)有兩個(gè)面互相平行,其余四個(gè)面都是等腰梯形的六面體是棱臺(tái)各側(cè)面都是正方形的四棱柱一定是正方體分別以矩形兩條不等的邊所在直線為旋轉(zhuǎn)軸,將矩形旋轉(zhuǎn),所得到的兩個(gè)圓柱是兩個(gè)不同的圓柱其中正確的有_個(gè)()A1B2C3D4分析中兩個(gè)底面平行且相似,其余各面都是梯形,并不能保證側(cè)棱會(huì)交于一點(diǎn),所以是錯(cuò)誤的;中兩個(gè)底面互相平行,其余四個(gè)面都是等腰梯形,也有可能兩底面根本就不相似,所以不正確;中底面不一定是正方形,所以不正確;很明顯是正確的答案A2下列命題中正確的是()A有兩個(gè)面平行,其余各面都是四邊形的幾何體叫棱柱B有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱C有一個(gè)面是多邊形,其余各面都是三角形的幾何體叫棱錐D棱臺(tái)各側(cè)棱的延長(zhǎng)線交于一點(diǎn)答案D3下列命題中正確的是()A以直角三角形的一直角邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐B以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺(tái)C圓柱、圓錐、圓臺(tái)都有兩個(gè)底面D圓錐的側(cè)面展開圖為扇形,這個(gè)扇形所在圓的半徑等于圓錐底面圓的半徑分析以直角梯形垂直于底的腰為軸,旋轉(zhuǎn)所得的旋轉(zhuǎn)體才是圓臺(tái),所以B不正確;圓錐僅有一個(gè)底面,所以C不正確;圓錐的側(cè)面展開圖為扇形,這個(gè)扇形所在圓的半徑等于圓錐的母線長(zhǎng),所以D不正確很明顯A正確答案A思路2例1(2007寧夏模擬,理6)長(zhǎng)方體AC1的長(zhǎng)、寬、高分別為3、2、1,從A到C1沿長(zhǎng)方體的表面的最短距離為()ABCD3023活動(dòng)解決空間幾何體表面上兩點(diǎn)間最短線路問(wèn)題,一般都是將空間幾何體表面展開,轉(zhuǎn)化為求平面內(nèi)兩點(diǎn)間線段長(zhǎng),這體現(xiàn)了數(shù)學(xué)中的轉(zhuǎn)化思想解如圖3,在長(zhǎng)方體ABCDA1B1C1D1中,AB3,BC2,BB11圖3如圖4所示,將側(cè)面ABB1A1和側(cè)面BCC1B1展開,圖4則有AC1,即經(jīng)過(guò)側(cè)面ABB1A1和側(cè)面BCC1B1時(shí)的最短距離是;265226如圖5所示,將側(cè)面ABB1A1和底面A1B1C1D1展開,則有AC1,即經(jīng)過(guò)側(cè)面ABB1A1和底面A1B1C1D1時(shí)的最短距離是;323圖5如圖6所示,將側(cè)面ADD1A1和底面A1B1C1D1展開,圖6則有AC1,即經(jīng)過(guò)側(cè)面ADD1A1和底面A1B1C1D1時(shí)的最短距離是524252由于,336所以由A到C1在正方體表面上的最短距離為23答案C點(diǎn)評(píng)本題主要考查空間幾何體的簡(jiǎn)單運(yùn)算及轉(zhuǎn)化思想求表面上最短距離可把圖形展成平面圖形變式訓(xùn)練1圖7是邊長(zhǎng)為1M的正方體,有一蜘蛛潛伏在A處,B處有一小蟲被蜘蛛網(wǎng)粘住,請(qǐng)制作出實(shí)物模型,將正方體剪開,描述蜘蛛爬行的最短路線圖7圖8分析制作實(shí)物模型略通過(guò)正方體的展開圖8可以發(fā)現(xiàn),AB間的最短距離為A、B兩點(diǎn)間的線段的長(zhǎng)由展開圖可以發(fā)現(xiàn),C點(diǎn)為其中一條棱的中點(diǎn)具體爬行路線如圖9中的粗線所示,我們要注512意的是爬行路線并不唯一解爬行路線如圖916所示圖92(2006江西高考,理15)如圖10所示,已知正三棱柱ABCA1B1C1的底面邊長(zhǎng)為1,高為8,一質(zhì)點(diǎn)自A點(diǎn)出發(fā),沿著三棱柱的側(cè)面繞行兩周到達(dá)A1點(diǎn)的最短路線的長(zhǎng)為_圖10分析將正三棱柱ABCA1B1C1沿側(cè)棱AA1展開,其側(cè)面展開圖如圖11所示,則沿著三棱柱的側(cè)面繞行兩周到達(dá)A1點(diǎn)的最短路線的長(zhǎng)就是圖11中ADDA1延長(zhǎng)A1F至M,使得A1FFM,連接DM,則A1DDM,如圖12所示圖11圖12則沿著三棱柱的側(cè)面繞行兩周到達(dá)A1點(diǎn)的最短路線的長(zhǎng)就是圖12中線段AM的長(zhǎng)在圖12中,AA1M是直角三角形,則AM1022218M答案10知能訓(xùn)練1(2007廣東中山二模,文2)如圖13,觀察四個(gè)幾何體,其中判斷正確的是()圖13A(1)是棱臺(tái)B(2)是圓臺(tái)C(3)是棱錐D(4)不是棱柱分析圖(1)不是由棱錐截來(lái)的,所以(1)不是棱臺(tái);圖(2)上下兩個(gè)面不平行,所以(2)不是圓臺(tái);圖(4)前后兩個(gè)面平行,其他面是平行四邊形,且每相鄰兩個(gè)四邊形的公共邊平行,所以(4)是棱柱;很明顯(3)是棱錐答案C2下面幾何體中,過(guò)軸的截面一定是圓面的是()A圓柱B圓錐C球D圓臺(tái)分析圓柱的軸截面是矩形,圓錐的軸截面是等腰三角形,圓臺(tái)的軸截面是等腰梯形,球的軸截面是圓面,所以A、B、D均不正確答案C3(2007山東菏澤二模,文13)一個(gè)無(wú)蓋的正方體盒子展開后的平面圖,如圖14所示,A、B、C是展開圖上的三點(diǎn),則在正方體盒子中ABC_圖14分析如圖15所示,折成正方體,很明顯點(diǎn)A、B、C是上底面正方形的三個(gè)頂點(diǎn),則ABC90圖15答案904(2007山東東營(yíng)三模,文13)有一粒正方體的骰子每一個(gè)面有一個(gè)英文字母,如圖16所示從3種不同角度看同一粒骰子的情況,請(qǐng)問(wèn)H反面的字母是_圖16分析正方體的骰子共有6個(gè)面,每個(gè)面都有一個(gè)字母,從每一個(gè)圖中都看到有公共頂點(diǎn)的三個(gè)面,與標(biāo)有S的面相鄰的面共有四個(gè),由這三個(gè)圖,知這四個(gè)面分別標(biāo)有字母H、E、O、P、D,因此只能是標(biāo)有“P”與“D”的面是同一個(gè)面,P與D是一個(gè)字母;翻轉(zhuǎn)圖,使S面調(diào)整到正前面,使P轉(zhuǎn)成D,則O為正下面,所以H的反面是O答案O5圓臺(tái)的一個(gè)底面周長(zhǎng)是另一個(gè)底面周長(zhǎng)的3倍,軸截面的面積等于392CM2,母線與軸的夾角是45,求這個(gè)圓臺(tái)的高、母線長(zhǎng)和底面半徑分析這類題目應(yīng)該選取軸截面研究幾何關(guān)系解圓臺(tái)的軸截面如圖17,圖17設(shè)圓臺(tái)上、下底面半徑分別為XCM和3XCM,延長(zhǎng)AA1交OO1的延長(zhǎng)線于S在RTSOA中,ASO45,則SAO45所以SOAO3X所以O(shè)O12X又(6X2X)2X392,解得X7,21所以圓臺(tái)的高OO114CM,母線長(zhǎng)LOO1CM,而底面半徑分別為7CM和21CM,24即圓臺(tái)的高14CM,母線長(zhǎng)CM,底面半徑分別為7CM和21CM46(2005全國(guó)高中數(shù)學(xué)競(jìng)賽浙江預(yù)賽,4)正方體的截平面不可能是鈍角三角形直角三角形菱形正五邊形正六邊形下述選項(xiàng)正確的是()ABCD分析正方體的截平面可以是銳角三角形、等腰三角形、等邊三角形,但不可能是鈍角三角形、直角三角形(證明略);對(duì)四邊形來(lái)講,可以是梯形(等腰梯形)、平行四邊形、菱形、矩形,但不可能是直角梯形(證明略);對(duì)五邊形來(lái)講,不可能是正五邊形(證明略);對(duì)六邊形來(lái)講,可以是六邊形(正六邊形)答案B拓展提升1有兩個(gè)面互相平行,其余各面是平行四邊形的幾何體是棱柱嗎分析如圖18所示,此幾何體有兩個(gè)面互相平行,其余各面是平行四邊形,很明顯這個(gè)幾何體不是棱柱,因此說(shuō)有兩個(gè)面互相平行,其余各面是平行四邊形的幾何體不一定是棱柱圖18由此看,判斷一個(gè)幾何體是否是棱柱,關(guān)鍵是緊扣棱柱的3個(gè)本質(zhì)特征有兩個(gè)面互相平行;其余各面都是四邊形;每相鄰兩個(gè)四邊形的公共邊都互相平行這3個(gè)特征缺一不可,圖18所示的幾何體不具備特征2有一個(gè)面是多邊形,其余各面都是三角形的幾何體是棱錐嗎剖析如圖19所示,將正方體ABCDA1B1C1D1截去兩個(gè)三棱錐AA1B1D1和CB1C1D1,得如圖20所示的幾何體圖19圖20圖20所示的幾何體有一個(gè)面ABCD是四邊形,其余各面都是三角形的幾何體,很明顯這個(gè)幾何體不是棱錐,因此說(shuō)有一個(gè)面是多邊形,其余各面都是三角形的幾何體不一定是棱錐由此看,判斷一個(gè)幾何體是否是棱錐,關(guān)鍵是緊扣棱錐的3個(gè)本質(zhì)特征有一個(gè)面是多邊形;其余各面都是三角形;這些三角形面有一個(gè)公共頂點(diǎn)這3個(gè)特征缺一不可,圖18所示的幾何體不具備特征課堂小結(jié)本節(jié)課學(xué)習(xí)了柱體、錐體、臺(tái)體、球體的結(jié)構(gòu)特征作業(yè)1如圖21,甲所示為一幾何體的展開圖圖211沿圖中虛線將它們折疊起來(lái),是哪一種幾何體試用文字描述并畫出示意圖2需要多少個(gè)這樣的幾何體才能拼成一個(gè)棱長(zhǎng)為6CM的正方體請(qǐng)?jiān)趫D乙棱長(zhǎng)為6CM的正方體ABCDA1B1C1D1中指出這幾個(gè)幾何體的名稱答案1有一條側(cè)棱垂直于底面且底面為正方形的四棱錐,如圖22甲所示圖222需要3個(gè)這樣的幾何體,如圖22乙所示分別為四棱錐A1CDD1C1,A1ABCD,A1BCC1B12如圖23,在正三棱柱ABCA1B1C1中,AB3,AA14M為AA1的中點(diǎn),P是BC上一點(diǎn),且由P沿棱柱側(cè)面經(jīng)過(guò)棱CC1到M的最短路線長(zhǎng)為,設(shè)這條最短路線與CC1的交點(diǎn)為N,求P點(diǎn)的位置29圖23分析把三棱錐展開后放在平面上,通過(guò)列方程解應(yīng)用題來(lái)求出P到C點(diǎn)的距離,即確定了P點(diǎn)的位置解如圖24所示,把正三棱錐展開后,設(shè)CPX,圖24根據(jù)已知可得方程22(3X229解得X2所以P點(diǎn)的位置在離C點(diǎn)距離為2的地方設(shè)計(jì)感想本節(jié)教學(xué)設(shè)計(jì),充分體現(xiàn)了新課標(biāo)的精神,按課程標(biāo)準(zhǔn)的要求降低邏輯推理,通過(guò)直觀感受和操作確認(rèn)來(lái)設(shè)計(jì)在使用時(shí),建議使用信息技術(shù)來(lái)處理圖片和例題,否則會(huì)造成課時(shí)不足的矛盾備課資料備用習(xí)題1下列說(shuō)法錯(cuò)誤的是()A多面體至少有四個(gè)面B九棱柱有9條側(cè)棱,9個(gè)側(cè)面,側(cè)面為平行四邊形C長(zhǎng)方體、正方體都是棱柱D三棱柱的側(cè)面為三角形分析多面體至少應(yīng)有四個(gè)頂點(diǎn)組成(否則至多3個(gè)頂點(diǎn),而3個(gè)頂點(diǎn)只圍成一個(gè)平面圖形),而四個(gè)頂點(diǎn)當(dāng)然必須圍成四個(gè)面,所以A正確;棱柱側(cè)面為平行四邊形,其側(cè)棱和側(cè)面的個(gè)數(shù)與底面多邊形的邊數(shù)相等,所以B正確;長(zhǎng)方體、正方體都是棱柱,所以C正確;三棱柱的側(cè)面是平行四邊形,不是三角形,所以D錯(cuò)誤答案D2一個(gè)棱柱有10個(gè)頂點(diǎn),所有的側(cè)棱長(zhǎng)的和為60CM,則每條側(cè)棱長(zhǎng)為_CM分析N棱柱有2N個(gè)頂點(diǎn),由于此棱柱有10個(gè)頂點(diǎn),那么此棱柱為五棱柱,又因棱柱的側(cè)棱都相等,五條側(cè)棱長(zhǎng)的和為60CM,可知每條側(cè)棱長(zhǎng)為12CM答案123在本節(jié)我們學(xué)過(guò)的常見(jiàn)幾何體中,如果用一個(gè)平面去截幾何體,如果截面是三角形,那么這個(gè)幾何體可能是_分析棱錐、棱柱、棱臺(tái)、圓錐等幾何體的截面都可以是三角形,因此本題答案是開放的,作答時(shí)要考慮周全答案棱錐、棱柱、棱臺(tái)、圓錐4如圖25所示,有12個(gè)小正方體,每個(gè)正方體6個(gè)面上分別寫著數(shù)字1、9、9、8、4、5,用這12個(gè)小正方體拼成一個(gè)長(zhǎng)方體,那么圖中看不見(jiàn)的那些小正方體的面有多少個(gè)并求這些面上的數(shù)字和圖25分析先求看得見(jiàn)的個(gè)數(shù),再求看不見(jiàn)的面的個(gè)數(shù),同樣,先求這12個(gè)小正方體各個(gè)面上的數(shù)字的和,再減去看得見(jiàn)的數(shù)字的和解這12個(gè)小正方體,共有面數(shù)61272個(gè),圖中看得見(jiàn)的面共有34419個(gè),故圖中看不見(jiàn)的面有721953個(gè),12個(gè)小正方體各個(gè)面的數(shù)字的和為(199845)12432,而圖中看得見(jiàn)的數(shù)字的和為130,所以看不見(jiàn)的那些小正方體的面上的數(shù)字的和為432130302,即看不見(jiàn)的那些小正方體的面有53個(gè),這些面上的數(shù)字和是302知識(shí)拓展1特殊的棱柱側(cè)棱不垂直于底面的棱柱稱為斜棱柱;側(cè)棱垂直于底面的棱柱叫做直棱柱;底面是正多邊形的直棱柱是正棱柱;底面是平行四邊形的四棱柱叫做平行六面體;側(cè)棱垂直于底面的平行六面體叫做直平行六面體;底面是矩形的直平行六面體叫做長(zhǎng)方體;棱長(zhǎng)都相等的長(zhǎng)方體叫做正方體其中長(zhǎng)方體對(duì)角線的平方等于同一頂點(diǎn)上三條棱的平方和2特殊的棱錐如果棱錐的底面為正多邊形,且各側(cè)面是全等的等腰三角形,那么這樣的棱錐稱為正棱錐,正棱錐各側(cè)面底邊上的高均相等,叫做正棱錐的斜高;側(cè)棱長(zhǎng)等于底面邊長(zhǎng)的正三棱錐又稱為正四面體3特殊的棱臺(tái)由正棱錐截得的棱臺(tái)叫做正棱臺(tái),正棱臺(tái)的側(cè)面是全等的等腰梯形,正棱臺(tái)各側(cè)面等腰梯形的高稱為正棱臺(tái)的斜高4球心與球的截面圓心的連線垂直于截面5規(guī)定在多面體中,不在同一面上的兩個(gè)頂點(diǎn)的連線叫做多面體的對(duì)角線,不在同一面上的兩條側(cè)棱稱為多面體的不相鄰側(cè)棱,側(cè)棱和底面多邊形的邊統(tǒng)稱為棱(設(shè)計(jì)者張新軍)112簡(jiǎn)單組合體的結(jié)構(gòu)特征整體設(shè)計(jì)教學(xué)分析立體幾何是研究現(xiàn)實(shí)世界中物體的形狀、大小與位置關(guān)系的學(xué)科,只有把我們周圍的物體形狀正確迅速分解開,才能清醒地認(rèn)識(shí)幾何學(xué),為后續(xù)學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ)簡(jiǎn)單幾何體(柱體、錐體、臺(tái)體和球)是構(gòu)成簡(jiǎn)單組合體的基本元素本節(jié)教材主要是為了讓學(xué)生在學(xué)習(xí)了柱、錐、臺(tái)、球的基礎(chǔ)上,運(yùn)用它們的結(jié)構(gòu)特征來(lái)描述簡(jiǎn)單組合體的結(jié)構(gòu)特征三維目標(biāo)1掌握簡(jiǎn)單組合體的概念,學(xué)會(huì)觀察、分析圖形,提高空間想象能力和幾何直觀能力2能夠描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu),學(xué)會(huì)通過(guò)建立幾何模型來(lái)研究空間圖形,培養(yǎng)學(xué)生的數(shù)學(xué)建模思想重點(diǎn)難點(diǎn)描述簡(jiǎn)單組合體的結(jié)構(gòu)特征課時(shí)安排1課時(shí)教學(xué)過(guò)程導(dǎo)入新課思路1在我們的生活中,酒瓶的形狀是圓柱嗎我們的教學(xué)樓的形狀是柱體嗎鋼筆、圓珠筆呢這些物體都不是簡(jiǎn)單幾何體,那么如何描述它們的結(jié)構(gòu)特征呢教師指出課題簡(jiǎn)單幾何體的結(jié)構(gòu)特征思路2現(xiàn)實(shí)世界中的物體表示的幾何體,除柱體、錐體、臺(tái)體和球體等簡(jiǎn)單幾何體外,還有大量的幾何體是由簡(jiǎn)單幾何體組合而成的,這些幾何體叫做簡(jiǎn)單組合體,這節(jié)課學(xué)習(xí)的課題是簡(jiǎn)單幾何體的結(jié)構(gòu)特征推進(jìn)新課新知探究提出問(wèn)題請(qǐng)指出下列幾何體是由哪些簡(jiǎn)單幾何體組合而成的圖1觀察圖1,結(jié)合生活實(shí)際經(jīng)驗(yàn),簡(jiǎn)單組合體有幾種組合形式請(qǐng)你總結(jié)長(zhǎng)方體與球體能組合成幾種不同的組合體它們之間具有怎樣的關(guān)系活動(dòng)讓學(xué)生仔細(xì)觀察圖1,教師適當(dāng)時(shí)候再提示略圖1中的三個(gè)組合體分別代表了不同形式學(xué)生可以分組討論,教師可以制作有關(guān)模型展示討論結(jié)果由簡(jiǎn)單幾何體組合而成的幾何體叫做簡(jiǎn)單組合體現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺(tái)、球等幾何結(jié)構(gòu)特征的物體組合而成圖1(1)是一個(gè)四棱錐和一個(gè)長(zhǎng)方體拼接成的,這是多面體與多面體的組合體;圖1(2)是一個(gè)圓臺(tái)挖去一個(gè)圓錐構(gòu)成的,這是旋轉(zhuǎn)體與旋轉(zhuǎn)體的組合體;圖1(3)是一個(gè)球和一個(gè)長(zhǎng)方體拼接成的,這是旋轉(zhuǎn)體與多面體的組合體常見(jiàn)的組合體有三種多面體與多面體的組合;多面體與旋轉(zhuǎn)體的組合;旋轉(zhuǎn)體與旋轉(zhuǎn)體的組合其基本形式實(shí)質(zhì)上有兩種一種是由簡(jiǎn)單幾何體拼接而成的簡(jiǎn)單組合體,如圖1(1)和(3)所示的組合體;另一種是由簡(jiǎn)單幾何體截去或挖去一部分而成的簡(jiǎn)單組合體,如圖1(2)所示的組合體常見(jiàn)的球與長(zhǎng)方體構(gòu)成的簡(jiǎn)單組合體及其結(jié)構(gòu)特征1長(zhǎng)方體的八個(gè)頂點(diǎn)在同一個(gè)球面上,此時(shí)長(zhǎng)方體稱為球的內(nèi)接長(zhǎng)方體,球是長(zhǎng)方體的外接球,并且長(zhǎng)方體的對(duì)角線是球的直徑;2一球與正方體的所有棱相切,則正方體每個(gè)面上的對(duì)角線長(zhǎng)等于球的直徑;3一球與正方體的所有面相切,則正方體的棱長(zhǎng)等于球的直徑應(yīng)用示例思路1例1請(qǐng)描述如圖2所示的組合體的結(jié)構(gòu)特征圖2活動(dòng)回顧簡(jiǎn)單幾何體的結(jié)構(gòu)特征,再將各個(gè)組合體分解為簡(jiǎn)單幾何體依據(jù)柱、錐、臺(tái)、球的結(jié)構(gòu)特征依次作出判斷解圖2(1)是由一個(gè)圓錐和一個(gè)圓臺(tái)拼接而成的組合體;圖2(2)是由一個(gè)長(zhǎng)方體截去一個(gè)三棱錐后剩下的部分得到的組合體;圖2(3)是由一個(gè)圓柱挖去一個(gè)三棱錐剩下的部分得到的組合體點(diǎn)評(píng)本題主要考查簡(jiǎn)單組合體的結(jié)構(gòu)特征和空間想象能力變式訓(xùn)練如圖3所示,一個(gè)圓環(huán)繞著同一個(gè)平面內(nèi)過(guò)圓心的直線L旋轉(zhuǎn)180,想象并說(shuō)出它形成的幾何體的結(jié)構(gòu)特征圖3答案一個(gè)大球內(nèi)部挖去一個(gè)同球心且半徑較小的球例2連接正方體的相鄰各面的中心(所謂中心是指各面所在正方形的兩條對(duì)角線的交點(diǎn)),所得的一個(gè)幾何體是幾面體并畫圖表示該幾何體活動(dòng)先畫出正方體,然后取各個(gè)面的中心,并依次連成線觀察即可連接相應(yīng)點(diǎn)后,得出圖形如圖41,再作出判斷12圖4解如圖41,正方體ABCDA1B1C1D1,O1、O2、O3、O4、O5、O6分別是各表面的中心由點(diǎn)O1、O2、O3、O4、O5、O6組成了一個(gè)八面體,而且該八面體共有6個(gè)頂點(diǎn),12條棱該多面體的圖形如圖4(2)所示點(diǎn)評(píng)本題中的八面體,事實(shí)上是正八面體八個(gè)面都是全等的正三角形,并且以每個(gè)頂點(diǎn)為其一端,都有相同數(shù)目的棱由圖還可見(jiàn),該八面體可看成是由兩個(gè)全等的四棱錐經(jīng)重合底面后而得到的,而且中間一個(gè)四邊形O2O3O4O5還是正方形,當(dāng)然其他的如O1O2O6O4等也是正方形為了增強(qiáng)立體效果,正方體應(yīng)畫得“正”些,而八面體的放置應(yīng)稍許“傾斜”些,并且“后面的”線,即被前面平面所遮住的線,如圖中的O1O5、O6O5、O5O2、O5O4應(yīng)畫成虛線變式訓(xùn)練連接上述所得的幾何體的相鄰各面的中心,試問(wèn)所得的幾何體又是幾面體答案六面體(正方體)思路2例1已知如圖5所示,梯形ABCD中,ADBC,且ADBC,當(dāng)梯形ABCD繞BC所在直線旋轉(zhuǎn)一周時(shí),其他各邊旋轉(zhuǎn)圍成的一個(gè)幾何體,試描述該幾何體的結(jié)構(gòu)特征圖5圖6活動(dòng)讓學(xué)生思考AB、AD、DC與旋轉(zhuǎn)軸BC是否垂直,以此確定所得幾何體的結(jié)構(gòu)特征解如圖6所示,旋轉(zhuǎn)所得的幾何體是兩個(gè)圓錐和一個(gè)圓柱拼接成的組合體點(diǎn)評(píng)本題主要考查空間想象能力以及旋轉(zhuǎn)體、簡(jiǎn)單組合體變式訓(xùn)練如圖7所示,已知梯形ABCD中,ADBC,且ADBC,當(dāng)梯形ABCD繞AD所在直線旋轉(zhuǎn)一周時(shí),其他各邊旋轉(zhuǎn)圍成的一個(gè)幾何體,試描述該幾何體的結(jié)構(gòu)特征圖7圖8答案如圖8所示,旋轉(zhuǎn)所得的幾何體是一個(gè)圓柱挖去兩個(gè)圓錐后剩余部分而成的組合體例2如圖9(1)、(2)所示的兩個(gè)組合體有什么區(qū)別圖9活動(dòng)讓學(xué)生分組討論和思考,教師及時(shí)點(diǎn)撥和評(píng)價(jià)學(xué)生解圖9(1)所示的組合體是一個(gè)長(zhǎng)方體上面又放置了一個(gè)圓柱,也就是一個(gè)長(zhǎng)方體和一個(gè)圓柱拼接成的組合體;而圖9(2)所示的組合體是一個(gè)長(zhǎng)方體中挖去了一個(gè)圓柱剩余部分構(gòu)成的組合體點(diǎn)評(píng)考查空間想象能力和組合體的概念變式訓(xùn)練如圖10,說(shuō)出下列物體可以近似地看作由哪幾種幾何體組成圖10答案圖10(1)中的幾何體可以看作是由一個(gè)圓柱和一個(gè)圓錐拼接而成;圖10(2)中的螺帽可以近似看作是一個(gè)正六棱柱中挖掉一個(gè)圓柱構(gòu)成的組合體知能訓(xùn)練1(2005湖南數(shù)學(xué)競(jìng)賽,9)若干個(gè)棱長(zhǎng)為2、3、5的長(zhǎng)方體,依相同方向拼成棱長(zhǎng)為90的正方體,則正方體的一條對(duì)角線貫穿的小長(zhǎng)方體的個(gè)數(shù)是()A64B66C68D70分析由2、3、5的最小公倍數(shù)為30,由2、3、5組成的棱長(zhǎng)為30的正方體的一條對(duì)角線穿過(guò)的長(zhǎng)方體為整數(shù)個(gè),所以由2、3、5組成棱長(zhǎng)為90的正方體的一條對(duì)角線穿過(guò)的小長(zhǎng)方體的個(gè)數(shù)應(yīng)為3的倍數(shù)答案B2圖11是一個(gè)獎(jiǎng)杯,可以近似地看作由哪幾種幾何體組成圖11答案獎(jiǎng)杯的底座是一個(gè)正棱臺(tái),底座的上面是一個(gè)正四棱柱,獎(jiǎng)杯的最上部,在正棱柱上底面的中心放著一個(gè)球拓展提升1請(qǐng)想一想正方體的截面可能是什么形狀的圖形活動(dòng)靜止是相對(duì)的,運(yùn)動(dòng)是絕對(duì)的,點(diǎn)動(dòng)成線,線動(dòng)成面用運(yùn)動(dòng)的觀點(diǎn)看幾何問(wèn)題的形成,容易建立空間想象力,這樣對(duì)于分割和組合圖形是有好處的明確棱柱、棱錐、棱臺(tái)等多面體的定義及圓柱、圓錐、圓臺(tái)的生成過(guò)程,以及柱、錐、臺(tái)的相互關(guān)系,對(duì)于我們正確的割補(bǔ)圖形也是有好處的對(duì)于正方體的分割,可通過(guò)實(shí)物模型,實(shí)際切割實(shí)驗(yàn),還可借助于多媒體手段進(jìn)行切割實(shí)驗(yàn)對(duì)于切割所得的平面圖形可根據(jù)它的定義進(jìn)行證明,從而判斷出各個(gè)截面的形狀探究本題考查立體幾何的空間想象能力,通過(guò)嘗試、歸納,可以有如下各種肯定或否定性的答案(1)截面可以是三角形等邊三角形、等腰三角形、一般三角形(2)截面三角形是銳角三角形,截面三角形不能是直角三角形、鈍角三角形(3)截面可以是四邊形平行四邊形、矩形、菱形、正方形、梯形、等腰梯形;截面為四邊形時(shí),這個(gè)四邊形至少有一組對(duì)邊平行(4)截面不能是直角梯形(5)截面可以是五邊形截面五邊形必須有兩組分別平行的邊,同時(shí)有兩個(gè)角相等;截面五邊形不可能是正五邊形(6)截面可以是六邊形截面六邊形必須有分別平行的邊,同時(shí)有兩個(gè)角相等(7)截面六邊形可以是等角(均為120)的六邊形,即正六邊形截面圖形如圖12中各圖所示圖12課堂小結(jié)本節(jié)課學(xué)習(xí)了簡(jiǎn)單組合體的概念和結(jié)構(gòu)特征作業(yè)習(xí)題11A組第3題;B組第2題設(shè)計(jì)感想本節(jié)教學(xué)設(shè)計(jì)依據(jù)課程標(biāo)準(zhǔn)的要求利用實(shí)物模型、計(jì)算機(jī)軟件觀察大量立體圖形,認(rèn)識(shí)簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描繪現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu)在教學(xué)時(shí),盡量多給學(xué)生一些圖片,以便學(xué)生形成直觀感知,初步獲得感性認(rèn)識(shí)備課資料備用習(xí)題1試描述圖13軸承所示的承架的結(jié)構(gòu)特征圖13答案底板其外部結(jié)構(gòu)是一個(gè)長(zhǎng)方體;半圓頭豎板其下部是一個(gè)長(zhǎng)方體,上部是半個(gè)圓柱,中間挖了一圓柱孔2如圖14,四邊形ABCD繞邊AD所在直線EF旋轉(zhuǎn),其中ADBC,ADCD,當(dāng)點(diǎn)A選在射線DE上的不同位置時(shí),形成的幾何體大小、形狀不同,比較其異同點(diǎn)圖14答案當(dāng)ADBC時(shí),四邊形ABCD繞EF旋轉(zhuǎn)一周所得幾何體為底面半徑為CD的圓柱和圓錐拼成;當(dāng)ADBC時(shí),四邊形ABCD繞EF旋轉(zhuǎn)一周所得幾何體為圓柱;當(dāng)0ADBC時(shí),四邊形ABCD繞EF旋轉(zhuǎn)一周所得幾何體為圓柱中挖去一個(gè)同底的圓錐;當(dāng)AD0時(shí),四邊形ABCD繞EF旋轉(zhuǎn)一周所得幾何體為圓柱中挖去一個(gè)同底等高的圓錐12空間幾何體的三視圖和直觀圖121中心投影與平行投影122空間幾何體的三視圖整體設(shè)計(jì)教學(xué)分析在上一節(jié)認(rèn)識(shí)空間幾何體結(jié)構(gòu)特征的基礎(chǔ)上,本節(jié)來(lái)學(xué)習(xí)空間幾何體的表示形式,以進(jìn)一步提高對(duì)空間幾何體結(jié)構(gòu)特征的認(rèn)識(shí)主要內(nèi)容是畫出空間幾何體的三視圖比較準(zhǔn)確地畫出幾何圖形,是學(xué)好立體幾何的一個(gè)前提因此,本節(jié)內(nèi)容是立體幾何的基礎(chǔ)之一,教學(xué)中應(yīng)當(dāng)給以充分的重視畫三視圖是立體幾何中的基本技能,同時(shí),通過(guò)三視圖的學(xué)習(xí),可以豐富學(xué)生的空間想象力“視圖”是將物體按正投影法向投影面投射時(shí)所得到的投影圖光線自物體的前面向后投影所得的投影圖稱為“正視圖”,自左向右投影所得的投影圖稱為“側(cè)視圖”,自上向下投影所得的投影圖稱為“俯視圖”用這三種視圖即可刻畫空間物體的幾何結(jié)構(gòu),這種圖稱之為“三視圖”教科書從復(fù)習(xí)初中學(xué)過(guò)的正方體、長(zhǎng)方體的三視圖出發(fā),要求學(xué)生自己畫出球、長(zhǎng)方體的三視圖;接著,通過(guò)“思考”提出了“由三視圖想象幾何體”的學(xué)習(xí)任務(wù)進(jìn)行幾何體與其三視圖之間的相互轉(zhuǎn)化是高中階段的新任務(wù),這是提高學(xué)生空間想象力的需要,應(yīng)當(dāng)作為教學(xué)的一個(gè)重點(diǎn)三視圖的教學(xué),主要應(yīng)當(dāng)通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖來(lái)完成因此,教科書主要通過(guò)提出問(wèn)題,引導(dǎo)學(xué)生自己動(dòng)手作圖來(lái)展示教學(xué)內(nèi)容教學(xué)中,教師可以通過(guò)提出問(wèn)題,讓學(xué)生在動(dòng)手實(shí)踐的過(guò)程中學(xué)會(huì)三視圖的作法,體會(huì)三視圖的作用對(duì)于簡(jiǎn)單幾何體的組合體,在作三視圖之前應(yīng)當(dāng)提醒學(xué)生細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖教材中的“探究”可以作為作業(yè),讓學(xué)生在課外完成后,再把自己的作品帶到課堂上來(lái)展示交流值得注意的問(wèn)題是三視圖的教學(xué),主要應(yīng)當(dāng)通過(guò)學(xué)生自己的親身實(shí)踐、動(dòng)手作圖來(lái)完成另外,教學(xué)中還可以借助于信息技術(shù)向?qū)W生多展示一些圖片,讓學(xué)生辨析它們是平行投影下的圖形還是中心投影下的圖形三維目標(biāo)1掌握平行投影和中心投影,了解空間圖形的不同表示形式和相互轉(zhuǎn)化,發(fā)展學(xué)生的空間想象能力,培養(yǎng)學(xué)生轉(zhuǎn)化與化歸的數(shù)學(xué)思想方法2能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,并能識(shí)別上述三視圖表示的立體模型,會(huì)用材料(如紙板)制作模型,提高學(xué)生識(shí)圖和畫圖的能力,培養(yǎng)其探究精神和意識(shí)重點(diǎn)難點(diǎn)教學(xué)重點(diǎn)畫出簡(jiǎn)單組合體的三視圖,給出三視圖和直觀圖,還原或想象出原實(shí)際圖的結(jié)構(gòu)特征教學(xué)難點(diǎn)識(shí)別三視圖所表示的幾何體課時(shí)安排1課時(shí)教學(xué)過(guò)程導(dǎo)入新課思路1能否熟練畫出上節(jié)所學(xué)習(xí)的幾何體工程師如何制作工程設(shè)計(jì)圖紙我們常用三視圖和直觀圖表示空間幾何體,三視圖是觀察者從三個(gè)不同位置觀察同一個(gè)幾何體而畫出的圖形;直觀圖是觀察者站在某一點(diǎn)觀察幾何體而畫出的圖形三視圖和直觀圖在工程建設(shè)、機(jī)械制造以及日常生活中具有重要意義本節(jié)我們將在學(xué)習(xí)投影知識(shí)的基礎(chǔ)上,學(xué)習(xí)空間幾何體的三視圖教師指出課題投影和三視圖思路2“橫看成嶺側(cè)成峰”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)地反映出物體的結(jié)構(gòu)特征,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖在初中,我們已經(jīng)學(xué)習(xí)了正方體、長(zhǎng)方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎教師點(diǎn)出課題投影和三視圖推進(jìn)新課新知探究提出問(wèn)題如圖1所示的五個(gè)圖片是我國(guó)民間藝術(shù)皮影戲中的部分片斷,請(qǐng)同學(xué)們考慮它們是怎樣得到的圖1通過(guò)觀察和自己的認(rèn)識(shí),你是怎樣來(lái)理解投影的含義的請(qǐng)同學(xué)們觀察圖2的投影過(guò)程,它們的投影過(guò)程有什么不同圖2圖2(2)(3)都是平行投影,它們有什么區(qū)別觀察圖3,與投影面平行的平面圖形,分別在平行投影和中心投影下的影子和原圖形的形狀、大小有什么區(qū)別圖3活動(dòng)教師介紹中國(guó)的民間藝術(shù)皮影戲,學(xué)生觀察圖片從投影的形成過(guò)程來(lái)定義從投影方向上來(lái)區(qū)別這三種投影根據(jù)投影線與投影面是否垂直來(lái)區(qū)別觀察圖3并歸納總結(jié)它們各自的特點(diǎn)討論結(jié)果這種現(xiàn)象我們把它稱為是投影由于光的照射,在不透明物體后面的屏幕上可以留下這個(gè)物體的影子,這種現(xiàn)象叫做投影其中,我們把光線叫做投影線,把留下物體影子的屏幕叫做投影幕圖2(1)的投影線交于一點(diǎn),我們把光由一點(diǎn)向外散射形成的投影稱為中心投影;圖2(2)和(3)的投影線平行,我們把在一束平行光線照射下形成投影稱為平行投影圖2(2)中,投影線正對(duì)著投影面,這種平行投影稱為正投影;圖2(3)中,投影線不是正對(duì)著投影面,這種平行投影稱為斜投影在平行投影下,與投影面平行的平面圖形留下的影子和原平面圖形是全等的平面圖形;在中心投影下,與投影面平行的平面圖形留下的影子和原平面圖形是相似的平面圖形以后我們用正投影的方法來(lái)畫出空間幾何體的三視圖和直觀圖知識(shí)歸納投影的分類如圖4所示圖4提出問(wèn)題在初中,我們已經(jīng)學(xué)習(xí)了正方體、長(zhǎng)方體、圓柱、圓錐、球的三視圖,請(qǐng)你回憶三視圖包含哪些部分正視圖、側(cè)視圖和俯視圖各是如何得到的一般地,怎樣排列三視圖正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到的幾何體的正投影圖,它們都是平面圖形觀察長(zhǎng)方體的三視圖,你能得出同一個(gè)幾何體的正視圖、側(cè)視圖和俯視圖在形狀、大小方面的關(guān)系嗎討論結(jié)果三視圖包含正視圖、側(cè)視圖和俯視圖光線從幾何體的前面向后面正投影,得到的投影圖叫該幾何體的正視圖(又稱主視圖);光線從幾何體的左面向右面正投影,得到的投影圖叫該幾何體的側(cè)視圖(又稱左視圖);光線從幾何體的上面向下面正投影,得到的投影圖叫該幾何體的俯視圖三視圖的位置關(guān)系一般地,側(cè)視圖在正視圖的右邊;俯視圖在正視圖的下邊如圖5所示圖5投影規(guī)律(1)正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度(2)一個(gè)幾何體的正視圖和側(cè)視圖高度一樣,正視圖和俯視圖長(zhǎng)度一樣,側(cè)視圖和俯視圖寬度一樣,即正、俯視圖長(zhǎng)對(duì)正;主、側(cè)視圖高平齊;俯、側(cè)視圖寬相等畫組合體的三視圖時(shí)要注意的問(wèn)題(1)要確定好主視、側(cè)視、俯視的方向,同一物體三視的方向不同,所畫的三視圖可能不同(2)判斷簡(jiǎn)單組合體的三視圖是由哪幾個(gè)基本幾何體生成的,注意它們的生成方式,特別是它們的交線位置(3)若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,分界線和可見(jiàn)輪廓線都用實(shí)線畫出,不可見(jiàn)輪廓線,用虛線畫出(4)要檢驗(yàn)畫出的三視圖是否符合“長(zhǎng)對(duì)正、高平齊、寬相等”的基本特征,即正、俯視圖長(zhǎng)對(duì)正;正、側(cè)視圖高平齊;俯、側(cè)視圖寬相等,前后對(duì)應(yīng)由三視圖還原為實(shí)物圖時(shí)要注意的問(wèn)題我們由實(shí)物圖可以畫出它的三視圖,實(shí)際生產(chǎn)中,工人要根據(jù)三視圖加工零件,需要由三視圖還原成實(shí)物圖,這要求我們能由三視圖想象它的空間實(shí)物形狀,主要通過(guò)主、俯、左視圖的輪廓線(或補(bǔ)充后的輪廓線)還原成常見(jiàn)的幾何體,還原實(shí)物圖時(shí),要先從三視圖中初步判斷簡(jiǎn)單組合體的組成,然后利用輪廓線(特別要注意虛線)逐步作出實(shí)物圖應(yīng)用示例思路1例1畫出圓柱和圓錐的三視圖活動(dòng)學(xué)生回顧正投影和三視圖的畫法,教師引導(dǎo)學(xué)生自己完成解圖6(1)是圓柱的三視圖,圖6(2)是圓錐的三視圖12圖6點(diǎn)評(píng)本題主要考查簡(jiǎn)單幾何體的三視圖和空間想象能力有關(guān)三視圖的題目往往依賴于豐富的空間想象能力要做到邊想著幾何體的實(shí)物圖邊畫著三視圖,做到想圖(幾何體的實(shí)物圖)和畫圖(三視圖)相結(jié)合變式訓(xùn)練說(shuō)出下列圖7中兩個(gè)三視圖分別表示的幾何體12圖7答案圖7(1)是正六棱錐;圖7(2)是兩個(gè)相同的圓臺(tái)組成的組合體例2試畫出圖8所示的礦泉水瓶的三視圖活動(dòng)引導(dǎo)學(xué)生認(rèn)識(shí)這種容器的結(jié)構(gòu)特征礦泉水瓶是我們熟悉的一種容器,這種容器是簡(jiǎn)單的組合體,其主要結(jié)構(gòu)特征是從上往下分別是圓柱、圓臺(tái)和圓柱圖8圖9解三視圖如圖9所示點(diǎn)評(píng)本題主要考查簡(jiǎn)單組合體的三視圖對(duì)于簡(jiǎn)單空間幾何體的組合體,一定要認(rèn)真觀察,先認(rèn)識(shí)它的基本結(jié)構(gòu),然后再畫它的三視圖變式訓(xùn)練畫出圖10所示的幾何體的三視圖圖10圖11答案三視圖如圖11所示思路2例1(2007安徽淮南高三第一次模擬,文16)如圖12甲所示,在正方體ABCDA1B1C1D1中,E、F分別是AA1、C1D1的中點(diǎn),G是正方形BCC1B1的中心,則四邊形AGFE在該正方體的各個(gè)面上的投影可能是圖12乙中的_甲乙圖12活動(dòng)要畫出四邊形AGFE在該正方體的各個(gè)面上的投影,只需畫出四個(gè)頂點(diǎn)A、G、F、E在每個(gè)面上的投影,再順次連接即得到在該面上的投影,并且在兩個(gè)平行平面上的投影是相同的分析在面ABCD和面A1B1C1D1上的投影是圖12乙(1);在面ADD1A1和面BCC1B1上的投影是圖12乙(2);在面ABB1A1和面DCC1D1上的投影是圖12乙(3)答案(1)(2)(3)點(diǎn)評(píng)本題主要考查平行投影和空間想象能力畫出一個(gè)圖形在一個(gè)平面上的投影的關(guān)鍵是確定該圖形的關(guān)鍵點(diǎn),如頂點(diǎn)等,畫出這些關(guān)鍵點(diǎn)的投影,再依次連接即可得此圖形在該平面上的投影如果對(duì)平行投影理解不充分,做該類題目容易出現(xiàn)不知所措的情形,避免出現(xiàn)這種情況的方法是依據(jù)平行投影的含義,借助于空間想象來(lái)完成變式訓(xùn)練如圖131所示,E、F分別為正方體面ADDA、面BCCB的中心,則四邊形BFDE在該正方體的各個(gè)面上的投影可能是圖132的_12圖13分析四邊形BFDE在正方體ABCDABCD的面ADDA、面BCCB上的投影是C;在面DCCD上的投影是B;同理,在面ABBA、面ABCD、面ABCD上的投影也全是B答案BC例2(2007廣東惠州第二次調(diào)研,文2)如圖14所示,甲、乙、丙是三個(gè)立體圖形的三視圖,甲、乙、丙對(duì)應(yīng)的標(biāo)號(hào)正確的是()甲乙丙圖14長(zhǎng)方體圓錐三棱錐圓柱ABCD分析由于甲的俯視圖是圓,則該幾何體是旋轉(zhuǎn)體,又因正視圖和側(cè)視圖均是矩形,則甲是圓柱;由于乙的俯視圖是三角形,則該幾何體是多面體,又因正視圖和側(cè)視圖均是三角形,則該多面體的各個(gè)面都是三角形,則乙是三棱錐;由于丙的俯視圖是圓,則該幾何體是旋轉(zhuǎn)體,又因正視圖和側(cè)視圖均是三角形,則丙是圓錐答案A點(diǎn)評(píng)本題主要考查三視圖和簡(jiǎn)單幾何體的結(jié)構(gòu)特征根據(jù)三視圖想象空間幾何體,是培養(yǎng)空間想象能力的重要方式,這需要根據(jù)幾何體的正視圖、側(cè)視圖、俯視圖的幾何特征,想象整個(gè)幾何體的幾何特征,從而判斷三視圖所描述的幾何體通常是先根據(jù)俯視圖判斷是多面體還是旋轉(zhuǎn)體,再結(jié)合正視圖和側(cè)視圖確定具體的幾何結(jié)構(gòu)特征,最終確定是簡(jiǎn)單幾何體還是簡(jiǎn)單組合體變式訓(xùn)練1圖15是一幾何體的三視圖,想象該幾何體的幾何結(jié)構(gòu)特征,畫出該幾何體的形狀圖15圖16分析由于俯視圖有一個(gè)圓和一個(gè)四邊形,則該幾何體是由旋轉(zhuǎn)體和多面體拼接成的組合體,結(jié)合側(cè)視圖和正視圖,可知該幾何體是上面一個(gè)圓柱,下面是一個(gè)四棱柱拼接成的組合體答案上面一個(gè)圓柱,下面是一個(gè)四棱柱拼接成的組合體該幾何體的形狀如圖16所示2(2007山東高考,理3)下列幾何體各自的三視圖中,有且僅有兩個(gè)視圖相同的是()圖17ABCD分析正方體的三視圖都是正方形,所以不符合題意,排除A、B、C答案D點(diǎn)評(píng)雖然三視圖的畫法比較繁瑣,但是三視圖是考查空間想象能力的重要形式,因此是新課標(biāo)高考的必考內(nèi)容之一,足夠的空間想象能力才能保證順利解決三視圖問(wèn)題知能訓(xùn)練1下列各項(xiàng)不屬于三視圖的是()A正視圖B側(cè)視圖C后視圖D俯視圖分析根據(jù)三視圖的規(guī)定,后視圖不屬于三視圖答案C2兩條相交直線的平行投影是()A兩條相交直線B一條直線C兩條平行直線D兩條相交直線或一條直線圖18分析借助于長(zhǎng)方體模型來(lái)判斷,如圖18所示,在長(zhǎng)方體ABCDA1B1C1D1中,一束平行光線從正上方向下照射則相交直線CD1和DC1在面ABCD上的平行投影是同一條直線CD,相交直線CD1和BD1在面ABCD上的平行投影是兩條相交直線CD和BD答案D3甲、乙、丙、丁四人分別面對(duì)面坐在一個(gè)四邊形桌子旁邊,桌上一張紙上寫著數(shù)字“9”,如圖19所示甲說(shuō)他看到的是“6”,乙說(shuō)他看到的是“6”,丙說(shuō)他看到的是“9”,丁說(shuō)他看到的是“9”,則下列說(shuō)法正確的是()圖19A甲在丁的對(duì)面,乙在甲的左邊,丙在丁的右邊B丙在乙的對(duì)面,丙的左邊是甲,右邊是乙C甲在乙的對(duì)面,甲的右邊是丙,左邊是丁D甲在丁的對(duì)面,乙在甲的右邊,丙在丁的右邊分析由甲、乙、丙、丁四人的敘述,可以知道這四人的位置

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論