已閱讀5頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
tionandself-healingwillbepresentedwithgreatfeaturesaswellaschallengesrelatedtozeroofintelligentbenefitsTheMachiningprocessmonitoringandcontrolisacoreconceptonwhichtobuildupthenewgenerationofflexibleself-opti-misingintelligentNCmachines.In-processmeasurementandprocessingoftheinformationprovidedbydedicatedsensorsinstalledinthemachine,enablesautonomousdecisionmakingbasedontheon-linediagnosisofthecorrectmachine,work-piece,toolandmachiningprocesscondition,leadingtoanincreasedmachinereliabilitytowardszerodefects,togetherwithhigherproductivityandefficiency.Indeed,themainsensingandprocessingtechniquesintheliterature35focuson0094-114X/$-seefrontmatterC2112008ElsevierLtd.Allrightsreserved.*Correspondingauthor.Tel.:+441612003804.E-mailaddress:s.mekidmanchester.ac.uk(S.Mekid).MechanismandMachineTheory44(2009)466476ContentslistsavailableatScienceDirectMechanismandMachineTheorydoi:10.1016/j.mechmachtheory.2008.03.006underverytightconditions1,2.Themachine-toolindustryisrespondingtoanumberofrequirements,e.g.e_commerce,just-in-time-productionandmostimportantlyzerodefectcomponent.Thisisfacilitatedbyintegratingnewmaterials,designconcepts,andcontrolmech-anismswhichenablemachinetoolsoperatingathigh-speedwithaccuraciesbelowthan5lm.Howevertheintegrationofhumanexperienceinmanufacturingtowardsflexibleandself-optimisingmachinesiswidelymissing.Thiscanbeachievedbyenhancingexistingcomputingtechnologiesandintegratingthemwithhumanknowledgeofdesign,automation,machin-ingandservicingintoe-manufacturing.Thenextgenerationwillbedescribedasnewintelligentreconfigurablemanufacturingsystemswhichrealisesadynamicfusionofhumanandmachineintelligence,manufacturingknowledgeandstate-of-the-artdesigntechniques.Thismayleadtolow-costself-optimisingintegratedmachines.Itwillencompassfault-tolerantadvancedpredictivemaintenancefacilitiesforproducinghigh-qualityerror-freeworkpiecesusingconventionalandadvancedmanufacturingprocesses.1.IntroductionComplexcomponentmachinedwithlengerequiredforthenewgenerationuctsandprocessesofferssubstantialhigherqualityandbetterreliability.variousaspectsofthenextgenerationofintelligentmachinetoolcentres.C2112008ElsevierLtd.Allrightsreserved.defectsisatopperformanceinmassproductionanditbecomesanewchal-machine-tools.Increasingtheprecisionandaccuracyofmachines,prod-toawiderangeofapplicationsfromultra-precisiontomassproductionwithrecentdevelopmentofultraprecisionmachinesisreachingnanometreprecisionBeyondintelligentmanufacturing:AnewgenerationofflexibleintelligentNCmachinesS.Mekida,*,P.Pruschekb,J.HernandezcaTheUniversityofManchester,SchoolofMechanical,AerospaceandCivilEngineering,ManchesterM601QD,UKbInstituteforControlEngineeringofMachineToolsandManufacturingUnits,UniversityofStuttgart,GermanycIDEKOTechnologicalCentre,ArriagaKalea,220870ElgoibarGipuzkoa,SpainarticleinfoArticlehistory:Received30November2006Receivedinrevisedform3March2008Accepted4March2008Availableonline29April2008abstractNewchallengesforintelligentreconfigurablemanufacturingsystemsareontheagendaforthenextgenerationofmachinetoolcentres.Zerodefectworkpiecesandjust-in-timepro-ductionaresomeoftheobjectivestobereachedforbetterqualityandhighperformanceproduction.Sustainabilityrequiresaholisticapproachtocovernotonlyflexibleintelligentmanufacturebutalsoproductandservicesactivities.Newroutesphilosophyofpossiblemachinearchitecturewithcharacteristicssuchashybridprocesseswithin-processinspec-journalhomepage:/locate/mechmtOntheotherhand,specialattentionhastobepaidtothelatterprocesscontrolstrategies(ACO).CharacteristicexamplesS.Mekidetal./MechanismandMachineTheory44(2009)466476467canbefoundat1519.Themainfunctionalityprovidedbysuchcontrolsystemsisthepost-processself-optimisationofprocessparameterset-up(i.e.feeds,depthsofcut,etc.),withtheobjectiveofset-uptimeminimisation,processknowledgemanagementandprocessoptimisation,towardsflexiblejust-in-timeproduction.Withthein-processmonitoringofprocessperformanceandthepost-processmeasurementoftheresultingpartquality,aknowledgebasedprocessmodelisusedtodeterminethenewoptimisedsetofcuttingparameters,enablingautonomousself-optimisation.Inthesameway,asapre-vioussteptooptimisation,ACOsystemsarealsoappliedtoselectthefirstprocessset-upfornewpartqualityandprocessrequirements.Therefore,ifaflexibleintelligentNCmachinetoolistobedeveloped,processknowledgebasedmodelsareacomponentofprimaryimportancetobeintegratedunderthemachinetoolcontrolarchitecture.Inadditiontotheadaptationofcontrolparametersaccordingtoprocessconditions,controlparametershavealsotobeoptimalduringhandling(includingchangingoperationsofworkpiecesandtools)andpositioningoperationsastheseoper-ationsaccounttypicallyformorethan50%oftheoveralloperatingtime.Earliermethodsforparameteroptimisationcon-centratedonthereductionofpositioningandsettlingtimesofthefeedaxisbytuningonlyafewbasiccontrolparameters(e.g.gainofthepositioncontrolloopandgainandresettimeofthevelocitycontrolloop).Withincreasedcom-putationalpower,optimisationmethodsasdescribedin20cannowbereinvestigatedfortheusewithawiderparametersetincludingtheparametersforaccelerationandjerklimitswhicharedirectlyinfluencingthevibrationsofanaxis.Ifthecharacteristicsofacontrolledaxisareknownbymeansofthevibrationbehaviour,anadequategenerationoftheprogrammedtrajectoriescanyieldafurtheroptimisation.Methodsforinputshaping49canbeusedtodesigntrajectoriesthatdonotexciteresonantfrequenciesofagivensystem.Hence,settlingtimesandthuspositioningtimescanbefurtherreduced.Concerningparameteroptimisationthroughself-learningparticularly,theinterestoftheso-calledmachinelearningap-proaches21willbeintroducedasthemainresearchtrendinprocessmonitoringandcontrolstrategiestowardstheintel-ligentmanufacturingsystem.2.ExpectedcharacteristicsofthenextgenerationTheexpectedcharacteristicsofthenextgenerationofmachinecentresaredescribedasfollows:(a)Integration:developmentofanintegratedmachinetoolbeingcapableofperformingbothconventionalandnon-con-ventionalprocessesinoneplatform.(b)Bi-directionaldataflow:definitionofabi-directionalprocesschainforunifieddatacommunicationexchangebetweenCAD,CAM,CNCandDrivesystems.(c)Processcontrolloop:developmentandCNCinte-grationofrobustandreliablereal-timestrategiesforthein-processtool,part,andprocessconditionmonitoringandcontrol.(d)Predictivemaintenance:specificationofaload-andsituation-dependentconditionmonitoringformachinecomponentsasabasisforself-reliantmachineoperation.Thiswillbefollowedbytheformulationofaself-organisingpredictivemain-tenanceschedulethatisbasedonself-andremotediagnosticsandcoversbothshortandlongtermaspects.(e)Autonomousoptimisation:developmentofaself-configuringself-optimisingcontrolsystemforautonomousmanufacturing,basedonthein-processmonitoring,characterisationandmanagementofprocessknowledge.Tofacilitatesuchcharacteristics,thefollow-ingtopicswillbenecessarytobeimplemented:(a)Todevelopanintegratedintelligentmachinecentrededicatedtoe-manufacturing.(b)Toinvestigateanddevelopfast,stableandstiffreconfigurablemachineswithhybridmachiningprocessestoprepareanewplatformforfuturemachine-tools.(c)Toinvestigateimplementationoftotalerrorcompensationandinsituinspectionfacility.monitoringstrategiesforpartconditionmonitoring(surfaceroughness,surfaceintegrityanddimensionalaccuracy),toolconditionmonitoring(theso-calledTCMforwearandbreakagedetection),processconditionmonitoring(chatteronsetandcollisiondetection)andmachinecomponentconditionmonitoringforpredictivemaintenancepurposes(rotarycompo-nentsandpartssubjecttofrictionsuchasguideways).Sincedirectandin-processmeasurementisnotgenerallypossibleduetotheaggressiveenvironmentinthecuttingzonesurroundings,themainresearcheffortoverthelastdecadesforpartandtoolmonitoringhasbeenfocusedonindirectmeasurementtechniques(processcondition-based),inwhichcuttingprocesscharacteristics(i.e.cuttingforcesandpower,vibrations,cuttingtemperature,acousticemission,etc.)aremeasuredinordertoindirectlyinferthepartandtoolcondition6,7.SensitivityofferedbyCNCinternalservosignalsfromopenarchitecturecontrollersisunderstudyaswell8,9,sincetheyenablethedevelopmentofmonitoringandcontrolstrategieswithouttheneedofinstallingadditionalsensorsinthemachine.Inthesameway,basedonthedataprovidedbyin-processmonitoring,autonomousself-optimisationcanbeperformedwiththeintegrationofprocesscontrolstrategiesintothemachinetoolcontrolarchitecture.Machiningprocesscontrolstrat-egiesareclassifiedintotwomaingroups5,namelyadaptivecontrolconstraint(ACC)andadaptivecontroloptimisation(ACO).IntheformerACCcontrolstrategies,aprocessvariable(i.e.cuttingforce)iskeptconstantandundercontrolthroughthereal-timein-processregulationofacuttingprocessparameter(i.e.cuttingfeed),withtheaimofincreasingprocessproduc-tivityandrepeatability.MainresearcheffortsonACCstrategiesfocusoncuttingforcecontrol1012andchattervibrationsuppression13,14.drawbacktodealwith.468S.Mekidetal./MechanismandMachineTheory44(2009)466476Indeed,flexiblemonitoringsystemsarerequiredundertheactualmarketrequirementsandthus,reliableprocessdiag-nosisisnecessaryunderdifferentcuttingconditions.Nowadays,acommonproblematicsharedbyconventionalprocessmonitoringapproachesforpartandtoolconditionmonitoringisthelackofreliabilityunderchangingcuttingconditionshencelimitingtheflexibilityofsuchautomationsystems3.Asacharacteristicexampleofthisproblematicforprocesscon-ditionbasedtoolconditionmonitoring(TCM),theprocessconditionisnotonlyinfluencedbychangesintoolcondition,butitisalsodirectlyaffectedbycuttingconditions.Furthermore,underdifferentcuttingconditions,differentwearmechanismscanbeactivatedonthetool,eachonehavingitsparticularimpactonprocessandpartcondition.Therefore,whensetting-upprocessmonitoringsystemsfornewcuttingconditions,previoustrialsforprocesssignaldatabaseretrievalarerequired4.Thesearecombinedtogetherwithskilledoperatorswiththenecessaryprocessknowledgeinordertointerpretchangesinprocessbehaviour(i.e.forces,vibrations,etc.)andset-upsuiteddetectionlimits.Additionally,flexibleprocessmonitoringequipmentsoftenrequiresadditionalsensorsthatcanfailandresultinunforeseendowntime.Asaresult,whenhighflex-ibilityisrequired,monitoringsystemsareusuallyswitched-offinindustry,anddirectpost-processmeasurementisper-formed,withthecorrespondingreliabilitylackinthemachinedpartquality.Dealingwithsuchaproblematic,model-basedprocessmonitoringandsensorfusionapproachesarepointedoutasthealternativeinordertogetreliableprocessconditiondiagnosis,withaclearresearcheffortoverlastyearsformachiningpro-cessessuchasturning2224,grinding4,25,26andmilling27.Ontheotherhand,theintegrationofhumanexperienceinmanufacturingiswidelymissingconcerningmachiningpro-cessoptimisation.Set-uptimereductioniscriticalwhenflexiblejust-in-timeproductionisrequired.Nowadays,set-up-timemainlydependsonprocessknowledgeconcentratedinskilledoperators,andthereisalackofsystematicmanagement,re-trieval,sharingandoptimisationofthatkeyknowledge.Furthermore,characterisationofprocessknowledgeanddevelop-mentofmodelsforautonomousprocessoptimisationarerequiredifset-uptimesaretobedrasticallyreduced.(d)Todevelopandproducenewmethodologiesandconceptsofautonomousmanufacturing,self-supervisionandself-diagnostic/tuning/healing.(e)Todevelopandintegratereal-timeprocesscontrollersintoopenCNCanddrivesystemarchitecture,takingthemachinefromanaxis-controlledsystemtoamachiningprocess-controlledself-reliantsystem,basedontheon-lineinformationprovidedbyrobustandreliablesensingtechniquesfortool,part,andmachiningprocessconditionmonitoring.(f)TodevelopandincorporateanextendibleandknowledgebasedCAMsystemcapableofrecognisingcomplexfeatures,performingself-learningbasedonin-processmonitoreddataprovidedbymachinecontrolloops,andautonomouslydeterminingtheoptimumtools/setsforgivenrequirementsofpartquality,machineproductivityandprocesseffi-ciency.Followingthee-manufacturingapproach,inasecondstep,CAMsystemscapableofsharingself-optimisedpro-cessknowledgebetweennetworkedmachinesaretobedeveloped.Aninterdisciplinaryapproachofmachine-toolbuildersinordertoachievetheseobjectivesbecomesnecessaryandin-cludescontrolmanufacturers,researchinstitutionsandpotentialend-users.Suchadevelopmentwillrealiseanumberofbreakthroughsinthefuture,e.g.(a)Delay-freecumzero-downtimeproduction:theproposede-manufacturingapproachwillseetheuseofelectronicservicesbasedonavailabledatafrommachinedprocesses,sensorsignals,andhumanexperiencethatisintegratedinazerodelay-timesystemtoenablemachineswithnearzero-downtimeandproductionthatmeetsuserrequirementswithzerodelaytime.(b)Self-reliantproduction:machineswillbeenabledtooperatewidelyautonomously.(c)Optimalproduction:self-configurationandself-optimisationwilleliminateproductionerrorsdowntothelimitationsofthein-processmeasurementdevices.3.ConceptsofintelligentandflexiblemachinesInFig.2,theauthorsproposeanewintegratedconceptforthenextgenerationofmachinetoolcentres.Basedontheknowledgeacquiredandthefeaturesextracted,theperformanceofcontrolsystemswillbeextendedtowardsself-controlledmanufacturingwiththeobjectivesofcost-effective,highquality,fault-tolerantandmoreflexiblesystemswithbetterpro-cesscapability.NewintelligentcontrolsystemshavetobedevelopedandintegratedwithopenarchitecturecontrollerssuchasOpenCNCC210orOSACA-basedCNCs.Inordertoallowanautomatederror-freeproductionwithnearzerodowntime,openinterfaces,learningcapabilities,self-tuningandself-adjustingmechanismsaswellassophisticatedmodel-basedpredictioninstrumentshavetobeimplementedattheselayers.Qualityinspectioncouldoperateinsituwithenvironmentalconditionstakenintoaccount.Forthefirsttime,theconceptofself-healingwithe-maintenancecouldbe
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(xué)汽車(chē)運(yùn)用與維修(汽車(chē)檢測(cè)技術(shù))試題及答案
- 2025年中職旅游服務(wù)(導(dǎo)游服務(wù)技能)試題及答案
- 2025年大學(xué)四年級(jí)(皮革工程)皮革工藝新技術(shù)試題及答案
- 2025年高職(計(jì)算機(jī)網(wǎng)絡(luò)技術(shù))網(wǎng)絡(luò)組建與維護(hù)綜合測(cè)試題及答案
- 2025年大學(xué)第三學(xué)年(化學(xué))物理化學(xué)基礎(chǔ)階段測(cè)試試題及答案
- 2025年高職城市軌道交通運(yùn)營(yíng)管理(地鐵運(yùn)營(yíng)管理)試題及答案
- 2025年高職會(huì)計(jì)電算化(稅務(wù)申報(bào))試題及答案
- 2025年大學(xué)文化產(chǎn)業(yè)管理(文化產(chǎn)業(yè)概論)試題及答案
- 2025年中職計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)(網(wǎng)絡(luò)組建)試題及答案
- 2025年大學(xué)二年級(jí)(國(guó)際經(jīng)濟(jì)與貿(mào)易)國(guó)際結(jié)算基礎(chǔ)試題及答案
- 國(guó)家開(kāi)放大學(xué)電大本科《流通概論》復(fù)習(xí)題庫(kù)
- 機(jī)關(guān)檔案匯編制度
- 2025年下半年四川成都溫江興蓉西城市運(yùn)營(yíng)集團(tuán)有限公司第二次招聘人力資源部副部長(zhǎng)等崗位5人參考考試題庫(kù)及答案解析
- 2026福建廈門(mén)市校園招聘中小學(xué)幼兒園中職學(xué)校教師346人筆試參考題庫(kù)及答案解析
- 2025年高職物流管理(物流倉(cāng)儲(chǔ)管理實(shí)務(wù))試題及答案
- 設(shè)備管理體系要求2023
- 2025年學(xué)法減分試題及答案
- 2025年特種作業(yè)人員考試題庫(kù)及答案
- 邢臺(tái)課件教學(xué)課件
- 2025年新能源市場(chǎng)開(kāi)發(fā)年度總結(jié)與戰(zhàn)略展望
- 互聯(lián)網(wǎng)企業(yè)績(jī)效考核方案與實(shí)施細(xì)則
評(píng)論
0/150
提交評(píng)論