高中數(shù)學(xué)選修1-1第一章同步訓(xùn)練Word版_第1頁
高中數(shù)學(xué)選修1-1第一章同步訓(xùn)練Word版_第2頁
高中數(shù)學(xué)選修1-1第一章同步訓(xùn)練Word版_第3頁
高中數(shù)學(xué)選修1-1第一章同步訓(xùn)練Word版_第4頁
高中數(shù)學(xué)選修1-1第一章同步訓(xùn)練Word版_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、Part 1四種命題的相互關(guān)系1、四種命題之間的相互關(guān)系,如右圖所示。2、四種命題的真假之間的關(guān)系如下: (1)兩個(gè)命題互為逆否命題,它們有相同的真假性; (2)兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系。3、一些詞語的否定:詞語是一定是都是大于小于且詞語的否定不是一定不是不都是小于或等于大于或等于或詞語必有一個(gè)至少有n個(gè)至多有一個(gè)所有x成立所有x不成立詞語的否定一個(gè)也沒有至多有n1個(gè)至少有兩個(gè)存在一個(gè)x不成立存在有一個(gè)成立【典型例題】1、命題“正數(shù)的平方根不等于0”的逆命題:,逆命題為命題;否命題:,否命題是命題;逆否命題是:,逆否命題為命題2、寫出下列命題的逆命題、否命題、逆否命題

2、,并判斷其真假:(1)若且,則;(2)對頂角相等;(3)矩形的對角線互相平分且相等3、命題“兩條對角線相等的四邊形是矩形”是命題“矩形是兩條對角線相等的四邊形”的()逆命題否命題逆否命題無關(guān)命題4、命題“若,則”的否命題是()若,則若,則若,則若,則5、寫出下列命題的逆命題、否命題與逆否命題,并分別判斷它們的真假(1)菱形的對角線互相垂直;(2)若,則;(3)若,則方程有兩個(gè)不相等的實(shí)數(shù)根【基礎(chǔ)練習(xí)】:1、下列命題中,真命題是( )A、若,則 B、當(dāng)時(shí),的否命題C、“若,則”的逆命題 D、“相似三角形的對應(yīng)角相等“的逆否命題2、命題“若或,則”以及它的逆命題、否命題、逆否命題中,假命題的個(gè)數(shù)為

3、( )A、0 、C、3 D、43、下列命題中,不是真命題的為( )A、命題“若,則二次方程有實(shí)根”的逆否命題;B、“四邊相等的四邊形是正方形”的逆命題;C、“,則”的否命題;D、“對頂角相等”的逆命題4、在空間中,若四點(diǎn)不共面,則這四點(diǎn)中任何三點(diǎn)都不共線;若兩條直線沒有公共點(diǎn),則這兩條直線是異面直線。以上兩個(gè)命題中,逆命題為真命題的是 ;5、“已知全集U,若,則”的逆命題是 ; 它是(填真假) 命題鞏固練習(xí):6、有下列四個(gè)命題:“若,則互為相反數(shù)”的逆命題;“,則”的逆否命題;“若,則”的否命題;“若是無理數(shù),則是無理數(shù)”的逆命題。其中真命題的個(gè)數(shù)是( )A、0 B、1 C、2 D、37、命題

4、“若,則”以及它的逆命題、否命題、逆否命題中,真命題的個(gè)數(shù)為( )A、1 B、2 C、3 D、48、命題“若,則”是真命題,則下列命題一定是真命題的是( )A、若,則 B、若,則 C、若,則 D、若,則9、下列四個(gè)命題:“若,則互為相反數(shù)”的否命題;“若和都是偶數(shù),則是偶數(shù)”的否命題;“若,則”的逆否命題;已知是實(shí)數(shù),“若,則”的逆命題,其中真命題的序號(hào)是 ;10、反證法證明的原理是 ;11、用反證法證明“若不是偶數(shù),則、都不是偶數(shù)”時(shí),應(yīng)假設(shè) ;12、已知,求證:若,則13、已知是上的增函數(shù),求證:若,則能力提高題:14、若均為實(shí)數(shù),且,求證:中至少有一個(gè)大于0。15、用反證法證明:若,則不

5、可能都是奇數(shù)。Part 2充分條件與必要條件一、知識(shí)與方法1若,則稱是的充分條件,而是的必要條件。若且,則稱是的充要條件。2用集合法判斷充要條件也是一種常用手段,從集合之間的關(guān)系上理解:若,則A是B的充分條件;若,則A是B的必要條件;若,則A是B的必要條件;若且,則A既不是B的充分條件,也不是B的必要條件。從集合的觀點(diǎn)來判斷充要條件的思考方法,可進(jìn)一步加深對充要條件的理解?;A(chǔ)練習(xí):1、如果已知,則是的 條件,是的 條件;如果既有,又有,則是的 條件,記作;如果,且,則是的 條件;2、“”是“與是對頂角”的 條件;3、“”是“”的 條件;4、設(shè)原命題“若則”假,而逆命題真,則是的( )條件A、

6、充分不必要 B、必要不充分 C、充要 D、既不充分也不必要5、設(shè)原命題“若則”真,而逆命題假,則是的( )條件A、充分不必要 B、必要不充分 C、充要 D、既不充分也不必要6、設(shè)原命題“若則”與逆命題都真,則是的( )條件A、充分不必要 B、必要不充分 C、充要 D、既不充分也不必要7、設(shè)原命題“若則”與逆命題都假,則是的( )條件A、充分不必要 B、必要不充分 C、充要 D、既不充分也不必要鞏固練習(xí):8、“與面積相等”是“與全等”的( )條件A、充分不必要 B、必要不充分 C、充要 D、既不充分也不必要9、“”是“”的( )條件A、充分不必要 B、必要不充分 C、充要 D、既不充分也不必要1

7、0、“”是“函數(shù)為二次函數(shù)”的( )條件A、充分不必要 B、必要不充分 C、充要 D、既不充分也不必要11、如果、是實(shí)數(shù),則“”是“”的( )條件。A、充分不必要 B、必要不充分 C、充要 D、既不充分也不必要12、“ABCD是矩形”是“ABCD是一平行四邊形”的( )條件A、充分不必要 B、必要不充分 C、充要 D、既不充分也不必要13、“”是“”的 條件14、“有實(shí)根”是“”的 條件15、“”是不等式“”成立的 條件16、若是B的充分不必要的條件,則是的 條件17、“的圖象過原點(diǎn)”的 條件是“”能力提高:18、至少有一負(fù)實(shí)根的充要條件是( )A、 B、 C、 D、或19、下面命題中的真命題

8、是( )A、且是的充要條件B、是的充公條件C、是一元二次不等式的解集為R的充要條件D、一個(gè)三角形的三邊滿足勾股定理的充要條件是此三角形為直角三角形。充要條件及其證明基礎(chǔ)練習(xí):1、對任意實(shí)數(shù),在下列命題中,真命題是( )A、“”是“”的必要條件 B、“”是“”的必要條件C、“”是“”的充分條件 D、“”是“”的充分條件2、若非空集合,則“”是“的( )A、充分不必要條件 B、必要不充分條件 C、充要條件 D、既不充分也不必要條件3、是成立的( )A、充分不必要條件 B、必要不充分條件 C、充要條件 D、既不充分也不必要條件4、“是的 條件5、“”是“”的 條件6、下列四個(gè)結(jié)論中,正確的序號(hào)為 ;

9、“”是“”的必要不充分條件;在中,“”是“為直角三角形”的充要條件;若,則“”是“不全為零”的充要條件鞏固練習(xí):7、設(shè),則的一個(gè)必要不充分的條件是( )A、 B、 C、 D、8、“”是“函數(shù)的最小正周期為”的( )A、充分不必要條件 B、必要不充分條件 C、充要條件 D、既不充分也不必要條件9、設(shè)命題甲:和滿足;命題乙:和滿足,則甲是乙的( )A、充分不必要條件 B、必要不充分條件 C、充要條件 D、既不充分也不必要條件10、已知是不同的兩個(gè)平面,直線,直線,命題無公共點(diǎn);命題,則是的( )A、充分不必要條件 B、必要不充分條件 C、充要條件 D、既不充分也不必要條件11、一個(gè)三角形為直角三角

10、形的必要但不充分的條件是( )A、有兩個(gè)內(nèi)角相等 B、有兩個(gè)內(nèi)角分別等于和C、一邊上的中線長等于該邊長的一半 D、三個(gè)內(nèi)角和等于12、“”是“直線與直線相互垂直的 條件;13、設(shè)A、B是兩個(gè)命題,如果A是B的充分條件,那么是的 條件,是的 條件;14、如果A是B的必要不充分條件,B是C的充分必要條件,D是C的充分不必要條件,則A是D的 條件。15、已知、都是的必要條件,是的充分條件,是的充分條件,則是 ,是的 ;是的 。16、已知,求證:的充要條件是能力提高:17、已知、是非零實(shí)數(shù),且,求證:的充要條件是Part 3簡單的邏輯連結(jié)詞一、知識(shí)與方法1若,則稱是的充分條件,而是的必要條件。若且,則

11、稱是的充要條件。2用集合法判斷充要條件也是一種常用手段,從集合之間的關(guān)系上理解:若,則A是B的充分條件;若,則A是B的必要條件;若,則A是B的必要條件;若且,則A既不是B的充分條件,也不是B的必要條件。從集合的觀點(diǎn)來判斷充要條件的思考方法,可進(jìn)一步加深對充要條件的理解?;A(chǔ)性練習(xí):1、命題“p”或“非p”( )A、可能都是真命題 B、可能都是假命題 C、一真一假 D、只有p是真命題2、“a+b2c”的一個(gè)充分不必要條件是( )A、ac或bc B、ac且bc且bc D、ac或bb,那么”時(shí),假設(shè)的內(nèi)容應(yīng)是( )A、 B、 C、 D、4、如果原命題的結(jié)論是“p且q”形式,那么否命題的結(jié)論形式是(

12、)A、 B、 C、 D、5、如果原命題的結(jié)論是“p或q”形式,那么否命題的結(jié)論形式是( )A、 B、 C、 D、鞏固性練習(xí):6、|x|+|y|等價(jià)于( )A、x=0且y=0 B、x=0或y=0 C、 D、7、命題“存在實(shí)數(shù)x,使|x+1|”是( )A、“p或q”的形式 B、“非p”的形式 C、真命題 D、假命題8、( )A、充分不必要條件 B、必要不充分條件 C、充要條件 D、既不充分也不必要條件9、由命題p:6是12的約數(shù),q: 6是24的約數(shù),構(gòu)成“p或q”的形式的命題是 ;“p且q”的形式的命題是 ;“非p”的形式的命題是 ;10、若把命題看成一個(gè)復(fù)合命題,那么復(fù)合命題的形式是 ,其中構(gòu)

13、成它的兩個(gè)簡單命題是 、 。綜合性練習(xí):11、已知寫出由p、q構(gòu)成的“p或q”、“p且q”、“非p”形式的復(fù)合命題。12、在一次模擬打飛機(jī)的游戲中,李濤接連射擊兩次,設(shè)命題p1是“第一次射擊擊中目標(biāo)”,命題p2是“第二次射擊擊中目標(biāo)”。試用p1、p2以及邏輯連結(jié)詞“或”、“且”、“非”表示下列命題:命題s:兩次都擊中目標(biāo); 命題r:兩次都未擊中目標(biāo);命題t:恰有一次都擊中目標(biāo); 命題u:至少有一次都擊中目標(biāo);邏輯連結(jié)詞構(gòu)成命題的真假判定基礎(chǔ)練習(xí):1、若命題p:0是偶數(shù),命題q:2是3的約數(shù),則下列命題中為真的是( )A、 B、 C、 D、2、如果命題“非p或非q”是假命題,則在下列各結(jié)論中正確

14、的是( )(1)命題“”是真命題; (2)命題“”是假命題;(3)命題“”是真命題; (4)命題“”是假命題;A、(1)(3) B、(2)(4) C、(2)(3) D、(1)(4)3、設(shè)A、B是全集U的子集,命題p為“3”,則命題“非p”為( ):A、 B、 C、 D、4、設(shè)p、q是兩個(gè)命題,則“復(fù)合命題p或q為真,p且q為假”的充要條件是( )A、p、q中至少有一個(gè)為真 B、p、q中至少有一個(gè)為假C、p、q中只有一個(gè)為真 D、p為真,q為假5、由下列各組命題構(gòu)成“p或q”、“p且q”、“非p”形式的復(fù)合命題中,“p或q”為真,“p且q”為假,“非p”為真的是( )A、p:3為偶數(shù);q:4是奇

15、數(shù) B、p:3+2=6;q:53 C、;q:a a,b D、QR;N=N鞏固性練習(xí):6、下列命題:(1)54或45;(2)93;(3)命題“若ab,則a+cb+c”;(4)命題“菱形的兩條對角線互相垂直”,其中,假命題的個(gè)數(shù)是( )A、0 B、1 C、2 D、37、若p、q是兩個(gè)簡單命題,且“p或q”的否定是真命題,則必有( )A、p真q真 B、p假q假 C、p真q假 D、p假q真8、命題p:0不是自然數(shù); 命題q:是無理數(shù)。在命題“”、“”、“”、“”中,假命題是 ,真命題是 。9、已知命題p:0,q:,判斷復(fù)合命題的真假:(1)p且q ;(2)p或q ;(3)非p .10、命題p:若,則|

16、a|+|b|1是|a+b|1的充要條件。命題q:函數(shù)的定義域是。則( )A、“p或q”為假 B、“p且q”為真 C、p真q假 D、p假q真綜合性練習(xí):11、寫出命題“若ab=0,則a=0或b=0”的逆命題、否命題、逆否命題,并判斷它們的真假。Part 4 全稱量詞與存在量詞一、知識(shí)與方法:1表示全體的量詞稱為全稱量詞,記為“”;表示部分的量詞稱為存在量詞,記為“2要判定全稱命題“,”是真命題,要對集合中的每一個(gè)元素證明成立,如果在集合中找到一個(gè)元素使不成立,則這個(gè)全稱性命題是假命題;而要判定存在性命題“”是真命題,只要在集合中找到一個(gè)元素,使成立即可,如果在集合,使成立的不存在,則此存在性命題

17、為假基礎(chǔ)性練習(xí):1、 判斷下列語句是不是全稱命題或者特稱命題,如果是,用量詞符號(hào)表達(dá)出來:(1) 中國的所有江河都流入太平洋;(2) 0不能作除數(shù);(3) 任何一個(gè)實(shí)數(shù)除以1,仍等于這個(gè)實(shí)數(shù);(4) 每一個(gè)向量都有方向嗎?2、 判斷下列命題的真假:(1) 在平面直角坐標(biāo)系中,任意有序?qū)崝?shù)對(x,y)都對應(yīng)一點(diǎn)P;(2) 存在一個(gè)函數(shù),既是偶函數(shù)又是奇函數(shù);(3) 每一條線段的長度都能用正有理數(shù)表示;(4) 存在一個(gè)實(shí)數(shù),使等式成立。3、 設(shè)語句。(1) 寫出,并判定它是否是真命題?(2) 寫出,并判定它是否是真命題?4、 下列語句是不是全稱或者特稱命題:(1) 有一個(gè)實(shí)數(shù)a,a不能取對數(shù);(2

18、) 所有不等式的解集A,都有A;(3) 三角函數(shù)都是周期函數(shù)嗎?(4) 有的向量方向不定。5、 用題詞符號(hào)“”“”表達(dá)下列命題:(1) 實(shí)數(shù)都能寫成小數(shù)形式;(2) 凸n 邊形的外角和等于;(3) 任一個(gè)實(shí)數(shù)乘以1都等于它的相反數(shù);(4) 對任意實(shí)數(shù)x,都有x3x2;(5) 對任意角,都有。鞏固性練習(xí):6、 判斷以下命題的真假:(1);(1)是有理數(shù);(3);(4);(5)7、 用全稱量詞和存在量詞表示下列語句:(1) 有理數(shù)都能寫成分?jǐn)?shù)形式;(2) n邊形的內(nèi)角和等于(n2)1800;(3) 兩個(gè)有理數(shù)之間,都有另一個(gè)有理數(shù);(4) 有一個(gè)實(shí)數(shù)乘以任意一個(gè)實(shí)數(shù)都等于0。8、 設(shè)。試問:(1) 當(dāng)x=5時(shí),p(5)是真命題嗎?(2) p(1)是真命題嗎?(3) x取

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論