北師大版數(shù)學九年級下冊全冊課件_第1頁
北師大版數(shù)學九年級下冊全冊課件_第2頁
北師大版數(shù)學九年級下冊全冊課件_第3頁
北師大版數(shù)學九年級下冊全冊課件_第4頁
北師大版數(shù)學九年級下冊全冊課件_第5頁
已閱讀5頁,還剩335頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、九年級九年級數(shù)學下冊數(shù)學下冊北師北師第一章第一章 直角三角形的邊角關(guān)系直角三角形的邊角關(guān)系 學習新知學習新知檢測反饋檢測反饋學學 習習 新新 知知 你知道圖中建筑物的名字嗎?是的,它就是意大利著名的比薩斜塔,是世界著名建筑奇觀,位于意大利托斯卡納省比薩城北面的奇跡廣場上,是奇跡廣場三大建筑之一,也是意大利著名的標志之一,它從建成之日起便由于土層松軟而傾斜.應(yīng)該如何來描述它的傾斜程度呢應(yīng)該如何來描述它的傾斜程度呢? ?從梯子的傾斜程度談起梯子是我們?nèi)粘I钪谐R姷奈矬w梯子是我們?nèi)粘I钪谐R姷奈矬w你能比較兩個梯子哪個更陡嗎?你有哪些你能比較兩個梯子哪個更陡嗎?你有哪些辦法?辦法?正切的定義正切的

2、定義在下圖中,梯子AB和EF哪個更陡?你是怎樣判斷的?你有幾種判斷方法?問題問題1 1問題問題2 2在下圖中,梯子AB和EF哪個更陡?你是怎樣判斷的?問題問題3 3在下圖中,梯子AB和EF哪個更陡?你是怎么判斷的?問題問題4 4在下圖中,梯子AB和EF哪個更陡?你是怎樣判斷的?483.535 8351.531.313 313ACEDBCFD,梯子EF比梯子AB更陡. 知識拓展知識拓展 梯子的傾斜程度的判定方法梯子的傾斜程度的判定方法:(1):(1)梯子的傾梯子的傾斜程度和傾斜角有關(guān)系斜程度和傾斜角有關(guān)系, ,傾斜角越大傾斜角越大, ,梯子就越陡梯子就越陡. .(2)(2)梯子梯子的傾斜程度和鉛

3、直高度與水平寬度的比有關(guān)系的傾斜程度和鉛直高度與水平寬度的比有關(guān)系, ,鉛直高度鉛直高度與水平寬度的比越大與水平寬度的比越大, ,梯子就越陡梯子就越陡. .【想一想】【想一想】 如圖所示,小明想通過測量B1C1及AC1,算出它們的比,來說明梯子的傾斜程度;而小亮則認為,通過測量B2C2及AC2,算出它們的比,也能說明梯子的傾斜程度.你同意小亮的看法嗎?(1)直角三角形AB1C1和直角三角形AB2C2有什么關(guān)系?得得出兩個三角形相似出兩個三角形相似. .理由:理由:B2AC2=B1AC1,B2C2A=B1C1A=90,RtAB1C1RtAB2C2.1122122BCB CACAC( )和有什么關(guān)

4、系?112212=BCB CACAC.由于RtAB1C1RtAB2C2,所以有總結(jié)提升 如圖所示,在RtABC中,如果銳角A確定,那么銳角A的對邊與鄰邊的比便隨之確定,這個比叫做A的正切,記作tanA,即能力提升能力提升:如果A+B=90,那么tan A與tan B有什么關(guān)系?1tanBtan A= ,即任意銳角的正切值與它的余角的正切值互為倒數(shù).知識拓展知識拓展正切的注意事項:(1)tan A是一個完整的符號,它表示A的正切,記號里習慣省去角的符號“”.(2)tan A沒有單位,它表示一個比值,即直角三角形中A的對邊與鄰邊的比.(3)tan A不表示“tan”乘以“A”.(4)初中階段,我們

5、只學習直角三角形中銳角的正切.例例1 如圖所示表示甲、乙兩個自動扶梯,哪一個自動扶梯比較陡?解解:甲梯中,tan =41=82.乙梯中,tan =2255=.1213 -5因為tan tan ,所以甲梯更陡.如圖所示,有一山坡在水平方向上每前進100 m就升高60 m,那么山坡的坡度 (即tan )就是: i=tan =603=.10053=5鉛直高度水平寬度結(jié)論:坡面與水平面的夾角()稱為坡角,坡面的鉛直高度與水平寬度的比稱為坡度(或坡比),tan = ,即坡度等于坡角的正切.檢測反饋檢測反饋1.在RtABC中,C=90, AB=13 , AC=12 ,則tan A等于()A. B. C.

6、D.513512解析解析: :在RtABC中,C=90, AB=13,AC=12,BC=5,tan A= .故選B.B51212131252.如圖所示,將AOB放置在55的正方形網(wǎng)格中,則tanAOB的值是()A. B. C. D.2332解析:認真讀圖,在以AOB的O為頂點的直角三角形里求tanAOB的值,由圖可得tanAOB= .故選B.B322 13133 13133.如圖所示,在ABC中,C=90, AC=2, BC=1,則tan A的值是 . 11:.22BCtanAAC解析故填1234.河堤橫斷面如圖所示,堤高BC=5 m,迎水坡AB的坡度是1: (坡度是坡面的鉛直高度BC與水平寬

7、度AC之比),則AB的長是 . 33225(5 3)解析:在RtABC中, BC=5,tanA=1 ,AC=5 ,AB= =10(m).故填10 m.10 m謝謝大家九年級九年級數(shù)學下冊數(shù)學下冊北師北師第一章第一章 直角三角形的邊角關(guān)系直角三角形的邊角關(guān)系 學習新知學習新知檢測反饋檢測反饋學學 習習 新新 知知如圖所示,我們在上一節(jié)課學習了直角三角形中的一種邊與角之間的關(guān)系正切.由正切定義我們知道正切是一個比值,并且得出了當RtABC中的一個銳角A確定時,其對邊與鄰邊的比值便隨之確定.問題思考問題思考正弦、余弦、三角函數(shù)的定義正弦、余弦、三角函數(shù)的定義問題問題1如圖所示,在直角三角形中,除了兩

8、直角邊的比值外還有其他邊之間的比值嗎?以A為例,共同總結(jié):A的對邊與斜邊的比叫做A的正弦(sine),記作sin A,即sin A=A的鄰邊與斜邊的比叫做A的余弦(cosine),記作cos A,即cos A=銳角A的正弦、余弦和正切都是A的三角函數(shù).提示:當銳角A變化時,相應(yīng)的正弦、余弦和正切值也隨之變化.A的對邊斜邊A的鄰邊斜邊sin A,cos A與梯子傾斜程度的關(guān)系問題問題2在教材圖1-3中,梯子的傾斜程度與sin A和cos A有關(guān)系嗎?BCAB1111BCAB如圖所示,AB=A1B1,在RtABC中,sin A= ,在RtA1B1C1中sinA1= .AB=A1B1,1111.BC

9、BCABAB即sin Asin A1,梯子A1B1比梯子AB陡.梯子的傾斜程度與sin A有關(guān)系.sin A的值越大,梯子越陡.正弦值也能反映梯子的傾斜程度.例例2 如圖所示,在RtABC中,B=90,AC=200,sin A=0.6,求BC的長.200BCBCAC,即解:在RtABC中,sin A= =0.6,BC=2000.6=120.想一想想一想: :你還能求出cos A,sin C和cos C的值嗎?cos A=0.8,sin C=0.8,cos C=0.6.知識拓展1.若A+B=90;一個銳角的正弦等于它余角的余弦,sin A=cos B;一個銳角的余弦等于它余角的正弦;cos A=

10、sin B.sincosAA2.銳角三角函數(shù)之間的關(guān)系:(1)同一個角:商的關(guān)系:tan A= ;平方關(guān)系:sin2A+cos2A=1.(2)互余兩角:若A+B=90,則sin A=cos B,cos A=sin B.1213【做一做】如圖所示,在RtABC中,C=90,cos A= , AC=10,AB等于多少?sin B呢?解:在RtABC中,cos A=AB=sin B=101213ACABAB,10 1365.1261012.65136ACAB檢測反饋檢測反饋1.如圖所示,在RtABC中,C=90,AB=6,cos B= ,則BC的長為 ()A.4 B.2 C. D.23518 131

11、312 1313解析:cos B= , .AB=6,CB= 6=4.故選A.2323CBAB23A2.在RtABC中,C=90,若cos A= ,則tan B的值是( )A. B. C. D.2 55553 5552解析解析:在RtABC中,C=90,cos A= ,tan B= ,AC2+BC2=AB2.cos A= ,設(shè)AC=2x(x0),則AB=3x,BC= x,tan B = .故選A.ACAB522 555xxA2323ACBC3.如圖所示,在RtABC中,CD是斜邊AB上的中線,已知CD=2,AC=3,則sin B的值是 .解析:在RtABC中,CD是斜邊AB上的中線,CD=2,A

12、B=2CD=4,sin B= .故填 .3.4ACAB34344.如圖所示,ABC的頂點都在方格紙的格點上,則sin A=.解析:過C作CDAB交AB的延長線于點D,如圖所示,設(shè)小方格的邊長為1,在RtACD中,AC= =2 ,sin A= 故填 .555.5CDAC5522ADCD55.如圖所示,ACB=90,DEAB,垂足為點E,AB=10,BC=6,求BDE的三個三角函數(shù)值.解:C=BED=90,B=B,ACBDEB,BDE=A,sinBDE=sin A= ,cosBDE=cos A= ,tanBDE=tan A= .354534謝謝大家九年級九年級數(shù)學下冊數(shù)學下冊北師北師第一章第一章

13、直角三角形的邊角關(guān)系直角三角形的邊角關(guān)系 學習學習新知新知檢測反饋檢測反饋30,45,60角的三角函數(shù)值角的三角函數(shù)值學學 習習 新新 知知 同學們,老師用我們常用的三角板拼成一棵松樹,你從圖片中發(fā)現(xiàn)了哪些銳角呢?問題思考問題思考30角的三角函數(shù)值有關(guān)這副三角板的邊角關(guān)系的知識,你已經(jīng)了解哪些?(1)直角三角形中,30角所對的直角邊是斜邊的一半;(2)45角所在的直角三角形的兩直角邊相等.能利用上面的性質(zhì)得出sin 30等于多少嗎?我們不妨設(shè)30角所對的邊為a(如圖所示),根據(jù)“直角三角形中30角所對的直角邊等于斜邊的一半”的性質(zhì),可得斜邊等于2a,所以sin 30=1.22aa根據(jù)勾股定理得

14、較長的直角邊長為 a,所以cos 30= ,tan 30= .33322aa13333aa45, ,60角的三角函數(shù)值角的三角函數(shù)值sin 60= ,cos 60 ,tan 60 .3322aa122aa33aa【做一做】(1)60角的三角函數(shù)值分別是多少?你是怎樣得到的?(2)45角的三角函數(shù)值分別是多少?你是怎樣得到的?如圖所示,設(shè)其中一條直角邊為a,則另一條直角邊也為a,根據(jù)勾股定理可得斜邊為 a.由此可求得:sin 45= , cos 45= ,tan 45= .12222aa12222aa1aa2三角函數(shù)三角函數(shù)銳角銳角正弦正弦sin余弦余弦cos正切正切tan30045060021

15、23332222123213由于30,45,60三個特殊角的三角函數(shù)值的分母都可以變化成一樣的,只是分子不同,所以30,45,60角的三角函數(shù)值可以利用口訣“一二三,三二一,三九二十七”進行記憶.(1)sin30+cos45;(2) sin260+cos260-tan45.解: (1)sin30+cos4522211212322(2) sin260+cos260-tan4514143.221. 0計算計算: :如圖(1)所示,一個小孩蕩秋千,秋千鏈子的長度為2.5 m,當秋千向兩邊擺動時,擺角恰好為60,且兩邊的擺動角相同,求它擺至最高位置時與其擺至最低位置時的高度之差(結(jié)果精確到0.01 m

16、).(1)最高位置與最低位置的高度差約為最高位置與最低位置的高度差約為0.34m. .,306021AOD OD=2.5m, 解:如圖(2)所示,根據(jù)題意可知,30cosODOCAC=2.5-2.1650.34(m). ).(165. 2235 . 230cosmODOC檢測反饋檢測反饋1.計算6tan 45-2cos 60的結(jié)果是()A.4 B.4 C.5 D.533解析:原式=61-2 =5.故選D.12D2.式子2cos 30-tan 45- 的值是 ()A.2 -2B.0C.2 D.2332(1tan60)解析:原式3=21 ( 31)31310.2B 故選 .B3.在RtABC中,C

17、=90,AB=2BC,現(xiàn)給出下列結(jié)論:sin A= ;cos B= ;tan A= ;tan B= .其中正確的結(jié)論是.(只需填上正確結(jié)論的序號) 3212333解析:如圖所示,在RtABC中,C=90,AB=2BC,sin A= ,故錯誤;sin A= ,A=30,B=60,cos B= ,故正確;A=30,tan A=tan 30= ,故正確;B=60,tan B=tan 60= ,故正確.故填.1212123334.如圖(1)所示,以O(shè)為圓心,任意長為半徑畫弧,與射線OM交于點A,再以A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,則cosAOB的值等于. 1212解析:如圖(2)

18、所示,連接AB,由畫出圖形的過程可知OA=OB,AO=AB,OA=AB=OB,即三角形OAB為等邊三角形,AOB=60,cosAOB=cos 60 = .故填 .125.如圖所示,小明在公園里放風箏,拿風箏線的手B離地面的高度AB為1.5 m,風箏飛到C處時的線長BC為30 m,這時測得CBD=60,求此時風箏離地面的高度.(結(jié)果精確到0.1 m, 1.73)3解:在直角三角形BCD中,sinCBD= ,CD=BCsinCBD=30sin 60=15 25.95(m).CE=CD+AB25.95+1.5=27.4527.5(m).答:此時風箏離地面的高度約是27.5 m.CDBC3謝謝大家九年

19、級九年級數(shù)學下冊數(shù)學下冊北師北師第一章第一章 直角三角形的邊角關(guān)系直角三角形的邊角關(guān)系 學習新知學習新知檢測反饋檢測反饋學學 習習 新新 知知 同學們小的時候都玩過蹺蹺板吧?如圖所示,蹺蹺板AB的一端B碰到地面時,AB與地面的夾角為15,且OA=OB=3 m.你能求出此時另一端A離地面的高度嗎?【問題】要求A離地面的高度,實際上就是求直角三角形的直角邊,所以只要求出sin B的值即可,但是15不是特殊角怎么辦呢?可以使用計算器進行解決.用計算器計算非特殊角的三角函數(shù)值 如圖所示,當?shù)巧嚼|車的吊箱經(jīng)過點A到達點B時,它走過了200 m.已知纜車行駛的路線與水平面的夾角為=16,那么纜車垂直上升的

20、距離是多少?(結(jié)果精確到0.01 m)1.纜車垂直上升的距離是線段.2.本題的已知條件是,需要求出的條件是.3.這三個量之間的關(guān)系是.BCAB1.纜車垂直上升的距離是線段BC.2.已知條件是=16,AB=200 m,需要求出的是線段BC的長.3.這三個量之間的關(guān)系為sin = .解:在RtABC中,=16,AB=200 m,根據(jù)正弦的定義,得sin 16= ,BC=ABsin 16=200sin 16.200BCBCAB用計算器求sin 16,cos 723825,tan 85.按鍵的順序按鍵的順序顯示結(jié)果顯示結(jié)果sin1616cos 723825 tan85tan85sinsin1 16 6

21、0.27563735580.2756373558coscos7 72 20.29836990670.2983699067tan8 85 511.430052311.4300523 = = = = 3 38 82 25 5用計算器計算非特殊角的三角函數(shù)值的運用在本節(jié)一開始的問題中,當纜車繼續(xù)由點B到達點D時,它又走過了200 m,纜車由點B到點D的行駛路線與水平面的夾角為=42,由此你還能算出什么?思路一思路一纜車從ABD上升的垂直高度:在RtDBE中,=42,BD=200 m,所以纜車上升的垂直高度DE=BDsin 42=200sin 42133.83(m),所以纜車從ABD上升的垂直高度為B

22、C+DE55.12+133.83=188.95(m).思路二思路二纜車從ABD移動的水平距離:在RtABC中,=16,AB=200 m,AC=ABcos 16192.25(m).在RtDBE中,=42,BD=200 m,BE=BDcos 42148.63(m).所以纜車從ABD水平移動的距離為AC+BE192.25+148.63=340.88(m).利用計算器根據(jù)三角函數(shù)值求銳角的度數(shù)利用計算器根據(jù)三角函數(shù)值求銳角的度數(shù)為了方便行人推自行車過天橋,市政府在10 m高的天橋兩端修建了40 m長的斜道(如圖所示).這條斜道的傾斜角是多少?解:如圖所示,在RtABC中,BC=10 m,AC=40 m

23、,sin A=101.404BCAC已知三角函數(shù)值求角度,要用到sin,cos,tan鍵的第二功能 “sin-1,cos-1,tan -1”和2ndf鍵.檢測反饋檢測反饋解析:根據(jù)科學計算器給出的結(jié)果進行判斷,sin 62200.8857.故選A.1.四位學生用計算器求sin 6220的值正確的是(小數(shù)點后保留四位)()A.0.8857B.0.8856C.0.8852D.0.8851A2.在“測量旗桿的高度”的數(shù)學課題學習中,某學習小組測得太陽光線與水平面的夾角為27,此時旗桿在水平地面上的影子的長度為24 m,則旗桿的高度約為()A.24 mB.20 m C.16 mD.12 m解析:如圖所

24、示,ABBC,BC=24 m,ACB=27,AB=BCtan 27,把BC=24,tan 270.51代入,得AB240.5112(m).故選D.D3.利用計算器求下列各角(精確到1).(1)sin A=0.75,求A;(2)cos B=0.8889,求B;(3)tan C=45.43,求C;解:(1)sin A=0.75,A4835.(2)cos B=0.8889,B2716.(3)tan C=45.43,C8844.4.有人說,數(shù)學家就是不用爬樹或者把樹砍倒就能夠知道樹高的人.小敏想知道校園內(nèi)一棵大樹的高,如圖所示,她測得BC=10 m,ACB=50,請你幫助她算出樹高AB約為多少米?(注

25、:樹垂直于地面;供選用數(shù)據(jù):sin 500.77,cos 500.64,tan 501.2)解:在RtABC中,BC=10,ACB=50,則AB=BCtan 5012,即樹高約為12 m.謝謝大家九年級九年級數(shù)學下冊數(shù)學下冊北師北師第一章第一章 直角三角形的邊角關(guān)系直角三角形的邊角關(guān)系 學習新知學習新知檢測反饋檢測反饋學學 習習 新新 知知在日常生活中,我們常常遇到與直角三角形有關(guān)的問題,知道直角三角形的邊可以求出角,知道角也可以求出相應(yīng)的邊.如圖所示,在RtABC中共有幾個元素?我們?nèi)绾卫靡阎厍蟪銎渌脑啬?已知兩條邊解直角三角形已知兩條邊解直角三角形【做一做】在RtABC中,如果已

26、知其中兩邊的長,你能求出這個三角形的其他元素嗎?155例例1 在RtABC中,C=90,A,B,C所對的邊分別為a,b,c,且a= ,b= ,求這個三角形的其他元素.分析:1.直角三角形中已知兩邊可以利用定理求出第三條邊.2.直角三角形中,已知兩邊可以利用求A(或B)的度數(shù).3.再利用求B(或A)的度數(shù).解:在RtABC中,a2+b2=c2,a= ,b= ,c= 在RtABC中,sin B= ,B=30,A=60.1552222( 15)( 5)2 5.ab5122 5bc方法2:已知兩條邊的長度,可以先利用銳角三角函數(shù)求出其中一個銳角,然后根據(jù)直角三角形中兩銳角互余求出另外一個銳角,再利用銳

27、角三角函數(shù)求出第三條邊. 知識拓展知識拓展 已知直角三角形兩條邊求其他元素的方法已知直角三角形兩條邊求其他元素的方法: :方法1:已知兩條邊的長度,可以先利用勾股定理求出第三邊,然后利用銳角三角函數(shù)求出其中一個銳角,再根據(jù)直角三角形兩銳角互余求出另外一個銳角.已知一條邊和一個角解直角三角形已知一條邊和一個角解直角三角形例例2 在RtABC中,C=90,A,B,C所對的邊分別為a,b,c,且b=30,B=25.求這個三角形的其他元素(邊長精確到1).【解析】在直角三角形中可以利用兩銳角互余求另外一個銳角的度數(shù),然后利用與銳角B和邊b有關(guān)的三角函數(shù)先求出其中一條邊a或c,再利用三角函數(shù)或勾股定理求

28、出第三條邊c或a.解:在RtABC中,C=90,B=25,A=65.sin B=tan B=sin3071.sin25Bbbbbcc ,tan30tan253064.bbbaaB,知識拓展已知直角三角形一條邊和一個銳角求其他元素的方法:已知一個銳角的度數(shù),先根據(jù)直角三角形兩銳角互余求出另外一個銳角的度數(shù);又知道一條邊的長度,根據(jù)三角函數(shù)的定義可以求出另外兩條邊的長度;也可以先利用三角函數(shù)的定義求出其中一條邊的長度,再利用三角函數(shù)或勾股定理求出第三條邊的長度.解直角三角形需要滿足的條件解直角三角形需要滿足的條件問題1 在RtABC中,如果已知兩個銳角,可以解直角三角形嗎?問題2 只給出一條邊長這

29、一個條件,可以解直角三角形嗎?只知道角度是無法求出直角三角形的邊長的.只給出一條邊長,不能解直角三角形.解直角三角形需要滿足的條件解直角三角形需要滿足的條件: :在直角三角形的6個元素中,直角是已知元素,如果再知道一條邊和第三個元素,那么這個三角形的所有元素就都可以確定下來.檢測反饋檢測反饋1.如圖所示的是教學用直角三角板,邊AC=30 cm,C=90,tanBAC= ,則邊BC的長為()A.5 cmB.10 cmC.20 cmD.30 cm333333解析:在直角三角形ABC中,根據(jù)三角函數(shù)定義可知tanBAC= ,AC=30 cm,tanBAC= ,BC=ACtanBAC=30 = (cm

30、).故選B.BCAC333310 3B2.如圖所示,在RtABO中,斜邊AB=1.若OCBA,AOC=36,則()A.點B到AO的距離為sin 54B.點B到AO的距離為tan 36C.點A到OC的距離為sin 36sin 54D.點A到OC的距離為cos 36sin 54 解析:根據(jù)圖形得出點B到AO的距離是指BO的長,根據(jù)銳角三角函數(shù)定義得出BO=ABsin 36,即可判斷A,B錯誤;過A作ADOC于D,則AD的長是點A到OC的距離,根據(jù)銳角三角函數(shù)定義得出AD=AOsin 36,AO=ABsin 54,所以AD=sin 36sin 54,即可判斷C正確,D錯誤.故選C.C3.如圖所示,已

31、知在RtABC中,斜邊BC上的高AD=4,cos B= ,則AC=. 解析:在RtABC中,cos B= ,sin B= ,tan B= .在RtABD中,AD=4,AB= .tan B= ,AC=ABtan B= =5.故填5.203344545ABBC35ACBC34ACBC45sin2033ABD34ACAB54.如圖所示,在ABC中,AB=AC=5,sinABC=0.8,則BC=. 解析:如圖所示,過點A作ADBC于D,AB=AC,BD=CD,在RtABD中,sinABC= =0.8,AD=50.8=4,則BD= =3,BC=2BD=6.故填6.ADAB22ABAD65.如圖所示,在R

32、tABC中,C=90,AB=10,cos A= ,求BC的長和tan B的值.4105ACACAB45解:在RtABC中,C=90,AB=10,cos A= ,AC=4,根據(jù)勾股定理,得BC= =6,tan B= .22ABAC8463ACBC謝謝大家九年級九年級數(shù)學下冊數(shù)學下冊北師北師第一章第一章 直角三角形的邊角關(guān)系直角三角形的邊角關(guān)系 學習新知學習新知檢測反饋檢測反饋三角函數(shù)值三角函數(shù)值的應(yīng)用的應(yīng)用學學 習習 新新 知知盤點盤點1833年以來重大海難年以來重大海難 2015年6月1日約21時28分,一艘從南京駛往重慶的客船“東方之星”號在長江中游沉沒.出事船舶載客458人,其中內(nèi)賓406

33、人、旅行社隨行工作人員5人、船員47人.僅14人生還. 歷史上的海難事件非常多,最著名的海難事件應(yīng)屬1912年的泰坦尼克號沉沒,但實際上,遇難人數(shù)遠超泰坦尼克號的遇難船只并不罕見.在這一統(tǒng)計所含的75起海難中,遇難人數(shù)超過1000人的共有18起.隨著時間的推移,因襲擊所致的海難逐漸減少.但21世紀以來,海難仍時有發(fā)生,如:2014年韓國“歲月號”客輪,2008年菲律賓“群星公主號”客輪,2006年埃及客輪“薩拉姆98號”,2002年的塞內(nèi)加爾“喬拉號”等船只遇難都造成了巨大的人員傷亡. 如圖所示,海中有一個小島A,該島四周10 n mile內(nèi)有暗礁.今有貨輪由西向東航行,開始在A島南偏西55的

34、B處,往東行駛20 n mile后到達該島的南偏西25的C處.之后,貨輪繼續(xù)往東航行.你認為貨輪繼續(xù)向東航行途中會有觸礁的危險嗎?你是怎樣想的?與同伴進行交流.利用方向角解決實際問題解:過A作BC的垂線,交BC于點D.在RtABD中,易知tan 55= ,BDADBD=ADtan 55.在RtACD中,易知tan 25= ,CDADCD=ADtan 25.設(shè)AD=x,則BD=tan 55x,CD=tan 25x.BC=BD-CD,tan 55x-tan 25x=20,2020.79.tan55tan25x 海里解得20.7910,貨輪沒有觸礁的危險.利用仰角和俯角解決實際問題【想一想】如圖所示

35、,小明想測量塔CD的高度.他在A處仰望塔頂,測得仰角為30,再往塔的方向前進50 m至B處,測得仰角為60,那么該塔有多高?(小明的身高忽略不計,結(jié)果精確到1 m)1.在這個圖中,仰角為30、仰角為60分別指哪兩個角?2.此題的示意圖和“船觸礁”問題的示意圖一樣嗎?它們有什么共同點?解:在RtACD中,tan 30= ,CDACtan30CDAC 即 .在RtBCD中,tan 60= ,即BC= .CDBCtan60CD由AB=AC-BC=50,得50tan30tan60CDCD,解得CD43,即塔CD的高度約為43 m.利用傾斜角解決實際問題【做一做做一做】某商場準備改善原有樓梯的安全性能,

36、把傾斜角由40減至35,已知原樓梯長為4 m,調(diào)整后的樓梯會加長多少?樓梯多占多長一段地面?(結(jié)果精確到0.01 m)解:如圖所示,在RtABC中,sin 40= ,AC=4 m,AB=4sin 40 m,原樓梯占地長BC=4cos 40 m.ABAC調(diào)整后,在RtADB中,sin 35= ,則AD= (m),樓梯占地長DB= m,ABAD4sin40sin35sin35AB4sin40tan35調(diào)整后樓梯加長:AD-AC= -40.48(m).樓梯比原來多占地面:DC=DB-BC= -4cos 400.61(m).4sin40sin354sin40tan35 知識拓展知識拓展 形如“雙直角三

37、角形”的圖形的解題規(guī)律:設(shè)C=,ADB=,CD=a.1.非特殊角的組合(和組合):AB= a.2.特殊角的組合(和組合): .(1)30與60組合:AB= .(2)30與45組合:AB= .(3)45與60組合:AB= .tantantantan32a312a332a檢測反饋檢測反饋3333331.漁船在A處看到燈塔C在北偏東60方向上,漁船向正東方向航行了12 n mile到達B處,在B處看到燈塔C在正北方向上,這時漁船與燈塔C的距離是 ()A.6 n mile B.8 n mileC.2 n mile D.4 n mile解析:由已知得BAC=90-60=30,在直角三角形ABC中,BC=

38、ABtan 30=12 =4 (n mile).故選D.D2.如圖所示,為測量某物體AB的高度,在D點測得A點的仰角為30,朝物體AB方向前進20 m,到達點C,再次測得點A的仰角為60,則物體AB的高度為()A.10 m B.10 mC.20 m D. m33320 33解析:在直角三角形ADB中,D=30,BD= .在直角三角形ABC中,ACB=60,BC= .CD=20,CD=BD-BC= AB- AB=20,解得AB=10 .故選A.3tan30ABAB333A3tan603ABAB3.長為4 m的梯子搭在墻上與地面成45角,作業(yè)時調(diào)整為60角(如圖所示),則梯子的頂端沿墻面升高了m.

39、 解析:由題意知調(diào)整前梯高為4sin 45=4 (m),調(diào)整后梯高為4sin 60=4 (m),梯子升高了2( )m.故填2( ).22 2232 3232322( 32)4.如圖所示,在小山的東側(cè)A點有一個熱氣球,由于受西風的影響,以30 m/min的速度沿與地面成75角的方向飛行,25 min后到達C處,此時熱氣球上的人測得小山西側(cè)B點的俯角為30,則小山東西兩側(cè)A,B兩點間的距離為m. 解析:過點A作ADBC,垂足為D,在RtACD中,ACD=75-30=45,AC=3025=750(m),AD=ACsin 45=375 (m).在RtABD中,易知B=30,AB=2AD=750 (m)

40、.故填750 .222750 25.小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如下左圖所示).小船從P處出發(fā),沿北偏東60方向劃行200 m到A處,接著向正南方向劃行一段時間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37的方向上,這時小亮與媽媽相距多遠(精確到1 m)?(參考數(shù)據(jù):sin 370.60,cos 370.80,tan 370.75, 1.41, 1.73 )解:過點P作PCAB于C,如上右圖所示,在RtAPC中,AP=200 m,ACP=90,PAC=60,PC=200sin 60=200 =100 .在RtPBC中,sin 37= ,P

41、B= 288(m).答:小亮與媽媽相距約288 m.2332PCPB100 0.730.s6i0n37PC謝謝大家九年級九年級數(shù)學下冊數(shù)學下冊北師北師第一章第一章 直角三角形的邊角關(guān)系直角三角形的邊角關(guān)系 學習新知學習新知檢測反饋檢測反饋學學 習習 新新 知知如圖所示展示的是山東省青島市電視塔夜晚的美麗景色,青島電視塔坐落于市中心櫸林公園內(nèi)116 m高的太平山上.由上海同濟大學馬人樂先生設(shè)計.由于其創(chuàng)意新、選點好、功能布局合理、色調(diào)協(xié)調(diào)及綜合規(guī)模宏大等,1995年被國務(wù)院發(fā)展研究中心選入中華之最大榮譽,認為是“中國第一鋼塔”.某數(shù)學興趣小組的同學想測量該電視塔的高度.【問題】測量電視塔的高度和

42、測量旗桿的高度的方法一樣嗎?兩者有什么區(qū)別?【活動一】測量傾斜角(一)測傾器的認識:如圖所示的是一個測傾器的外觀圖,它是測量傾斜角的儀器.簡單的測傾器由度盤、鉛錘和支桿組成.(二)測傾器的使用方法和步驟:1.把支桿豎直插入地面,使支桿的中心線、鉛垂線和度盤的0刻度線重合,這時度盤的頂線PQ在水平位置.2.轉(zhuǎn)動度盤,使度盤的直徑對準目標M,記下此時鉛垂線所指的度數(shù).0303060609090PQ0303060609090M30( (三三) )測傾器的運用測傾器的運用: :BOA+NOA=90,MON+NOA=90,BOA=MON.因此讀出BOA的度數(shù)也就讀出了仰角MON的度數(shù).測傾器上鉛垂線所示

43、的度數(shù)就是物體仰角的度數(shù).根據(jù)操作步驟:當度盤的直徑對準目標M時,鉛垂線指向一個度數(shù),即BOA的度數(shù).根據(jù)圖形我們不難發(fā)現(xiàn):【活動二】測量底部可以到達的物體的高度1.如圖所示,要測量物體MN的高度,需測量哪些數(shù)據(jù)?2.請說出測量物體MN的高度的一般步驟,需要測得的數(shù)據(jù)用字母表示.1.測量A點到物體底部N點的距離AN、測傾器的高度AC的長以及測量仰角MCE的度數(shù).2.測量底部可以到達的物體的高度的步驟:(1)在測點A處安置測傾器,測得M的仰角MCE=.(2)量出測點A到物體底部N的水平距離AN=l.(3)量出測傾器的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).【做一做】根據(jù)上面測量的

44、數(shù)據(jù),你能求出物體MN的高度嗎?說說你的理由.解:在RtMCE中,ME=ECtan =ANtan =ltan ,MN=ME+EN=ME+AC=ltan +a.【活動三活動三】測量底部不可以到達的物體的高度1.要測量物體MN的高度,使用測傾器測一次仰角夠嗎?2.如圖所示,你能類比活動二的方法得出測量底部不可以到達的物體的高度的一般步驟嗎?需要測得的數(shù)據(jù)用字母表示. 2.測量底部不可以到達的物體的高度的步驟: (1)在測點A處安置測傾器,測得此時M的仰角MCE=. (2)在測點A與物體之間的B處安置測傾器(A,B與N都在同一條直線上),測得此時M的仰角MDE=. (3)量出測傾器的高度AC=BD=

45、a,以及測點A,B之間的距離AB=b.結(jié)論:1.要測量物體MN的高度,測一次仰角是不夠的.【做一做】根據(jù)剛才測量的數(shù)據(jù),你能求出物體MN的高度嗎?說說你的理由.,tanMERt MDEED中解:在,,.tanMERt MCEECECEDb,在中tantan.tantanMEMEbtantantantan.tantantantanbbMEMNa【活動四】設(shè)計測量方案,撰寫活動報告某校學生去春游,在風景區(qū)看到一棵漢柏樹,不知這棵漢柏樹有多高,下面是兩位同學的一段對話:小明:我站在此處看樹頂仰角為45.小華:我站在此處看樹頂仰角為30.小明:我們的身高都是1.6 m.小華:我們相距20 m.請你根據(jù)

46、這兩位同學的對話,計算這棵漢柏樹的高度.(參考數(shù)據(jù): 1.414, 1.732,結(jié)果保留三個有效數(shù)字)323解:如圖所示,延長BC交DA于E.設(shè)AE的長為x m.在RtACE中,ACE=45,AEB=90,則CAE=45,CE=AE=x.在RtABE中,B=30,AE=x,tan B= ,即tan 30= ,BE= x.AEBExBEBE-CE=BC,BC=20 m, x-x=20,解得x=10 +10,33AD=AE+DE=10 +10+1.628.9(m).答:這棵漢柏樹的高度約為28.9 m.3檢測反饋檢測反饋1.如圖所示,為測量一棵與地面垂直的樹OA的高度 ,在距離樹的底端30 m的B

47、處,測得樹頂A的仰角ABO為,則樹OA的高度為()A. m B.30sin mC.30tan m D.30cos m30tan解析:在RtABO中,BO=30 m,ABO為,AO=BOtan =30tan (m).故選C.C2.某市進行城區(qū)規(guī)劃,工程師需測某樓AB的高度,工程師在D點用高2 m的測角儀CD,測得樓頂端A的仰角為30,然后向樓前進30 m到達E,又測得樓頂端A的仰角為60,則樓AB的高為 . 解析:在RtAFG中,AFG=60,AGC=90,tanAFG= ,FG= . 在RtACG中,ACG=30,tanACG= , AG.CG-FG=30 m, AG- =30,解得AG=15

48、 ,AB=(15 +2)m.故填(15 +2)m.AGFGtan3AGAGAFGAGCG3tanAGCGACG33AG33(15 32)m33.在一次綜合實踐活動中,小明要測某地一座古塔AE的高度,如圖所示,已知塔基AB的高為4 m,他在C處測得塔基頂端B的仰角為30,然后沿AC方向走5 m到達D點,又測得塔頂E的仰角為50.(人的身高忽略不計)(1)求AC的距離;(結(jié)果保留根號)(2)求塔高AE.(結(jié)果保留整數(shù))解:(1)在RtABC中,ACB=30,AB=4,tanACB= ,AC= (m).答:AC的距離為 m.(2)在RtADE中,ADE=50,AD=5+4 , ,AE=ADtanAD

49、E=(5+4 )tan 5014(m).答:塔高AE約為14 m.ABAC44 3tantan30ABACB4 33tanAEADEAD3謝謝大家九年級數(shù)學九年級數(shù)學下下 新課標新課標北師北師第二章第二章 二次函數(shù)二次函數(shù) 學習新知學習新知檢測反饋檢測反饋學學 習習 新新 知知趙州橋,又稱大石橋、安濟橋,是位于河北省趙縣城南五里洨河上的一座石拱橋,是我國古代石拱橋的杰出代表,其設(shè)計者是隋代杰出的工匠李春,建造于公元605年.趙州橋的設(shè)計構(gòu)思和工藝的精巧,在我國古橋中是首屈一指的,據(jù)世界橋梁的考證,像這樣的敞肩拱橋,歐洲到19世紀中期才出現(xiàn),比我國晚了一千二百多年,趙州橋的雕刻藝術(shù),包括欄板、望

50、柱和鎖口石等,其上獅象龍獸形態(tài)逼真,琢工的精致秀麗,不愧為文物寶庫中的藝術(shù)珍品.問題問題請同學們觀察趙州橋的橋拱的形狀,它的形狀可以近似地看成一種函數(shù)圖象,這和我們之前所學的函數(shù)圖象一樣嗎?體會函數(shù)的模型思想【引例】某果園有100棵橙子樹,平均每棵樹結(jié)600個橙子.現(xiàn)準備多種一些橙子樹以提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會減少.根據(jù)經(jīng)驗估計,每多種一棵樹,平均每棵樹就會少結(jié)5個橙子.(1)問題中有哪些變量?其中哪些是自變量?哪些是因變量?(2)假設(shè)果園增種x棵橙子樹,那么果園共有多少棵橙子樹?這時平均每棵樹結(jié)多少個橙子?(3)如果果園橙子的總產(chǎn)量為y個,那么

51、請你寫出y與x之間的關(guān)系式.展示:(1)自變量:橙子樹的棵數(shù)、橙子樹之間的距離、橙子樹接受陽光的多少等;因變量:橙子的個數(shù)、橙子的質(zhì)量等.(2)如果設(shè)果園增種x棵橙子樹,那么果園共有(100+x)棵樹,平均每棵樹結(jié)(600-5x)個橙子.(3)果園橙子的總產(chǎn)量y與x之間的關(guān)系式為y=(x+100)(600-5x)=-5x2+100 x+60000.【做一做做一做】設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存.如果存款額是100元,那么請你寫出兩年后的本息和y(元)的表達式.與存款有關(guān)的知識:1.銀行的儲蓄利率是隨時間的變化而變化的,也就是說,利率是一個變

52、量.2.利息=本金利率期數(shù)(時間).3.本息和=本金+利息.觀察y=100 x2+200 x+100與y=-5x2+100 x+60000的相同點.解:y=100(x+1)2=100 x2+200 x+100.問題問題1 已知矩形的周長為40 cm,它的面積可能是100 cm2嗎?可能是75 cm2嗎?還可能是多少?你能表示這個矩形的面積與其一邊長的關(guān)系嗎?【想一想】解:(1)設(shè)其中一邊長為x cm,則 =-x2+20 x=100,解得x1=x2=10. =-x2+20 x=75,解得x1=5,x2=15.這個矩形的面積與其一邊長的關(guān)系為S= =-x2+20 x.402xx402xx402xx

53、問題問題2 兩數(shù)的和是20,設(shè)其中一個數(shù)是x,你能寫出這兩數(shù)之積y的表達式嗎?解:y=x(20-x)=-x2+20 x.二次函數(shù)的定義【對比觀察】觀察三個式子的共同點: (1)y=-5x2+100 x+60000;(2)y=100 x2+200 x+100;(3)y=-x2+20 x.二次函數(shù)的定義.一般地,若兩個變量x,y之間的對應(yīng)關(guān)系可以表示成y=ax2+bx+c(a,b,c是常數(shù),a0)的形式,則稱y是x的二次函數(shù).知識拓展理解二次函數(shù)概念的注意事項:常數(shù)a0;自變量x的最高次數(shù)為2;等號的右邊是整式;要確定二次函數(shù)的關(guān)系式,只要確定a,b,c的值就可以了.二次函數(shù)的一般形式及自變量的取

54、值范圍( (一一) )二次函數(shù)的一般形式二次函數(shù)的一般形式1.二次函數(shù)的一般形式:y=ax2+bx+c (a0,b0,c0).2.系數(shù)a0,但是b,c都可以為0.3.二次函數(shù)的幾種不同表示形式:(1)y=ax2(a0,b=0,c=0).(2) y=ax2+c (a0,b=0,c0).(3) y=ax2+bx (a0,b0,c=0).(4)一般形式:y=ax2+bx+c (a0,b0,c0).( (二二) )二次函數(shù)自變量的取值范圍二次函數(shù)自變量的取值范圍 自變量的取值范圍是函數(shù)的一個有機組成部分,今后除了解決最值問題外,一般不刻意討論自變量的取值范圍.檢測反饋檢測反饋1.下列函數(shù)解析式中,一定

55、為二次函數(shù)的是()A.y=3x-1 B.y=ax2+bx+cC.s=2t2-2t+1 D.y=x2+1x1x解析:A,y=3x-1是一次函數(shù),故A錯誤;B,y=ax2+bx+c(a0)是二次函數(shù),故B錯誤;C,s=2t2-2t+1是二次函數(shù),故C正確;D,y=x2+ 不是二次函數(shù),故D錯誤.故選C.C2.已知二次函數(shù)y=1-3x+5x2,則其二次項系數(shù)a,一次項系數(shù)b,常數(shù)項c分別是()A.a=1,b=-3,c=5 B.a=1,b=3,c=5C.a=5,b=3,c=1 D.a=5,b=-3,c=1解析:函數(shù)y=1-3x+5x2是二次函數(shù),a=5,b=-3,c=1.故選D.D解析:當x=2時,y

56、=22+32-5=4+6-5=10-5=5.故填5.3.已知二次函數(shù)y=x2+3x-5,當x=2時,y=. 54.某廠今年一月份新產(chǎn)品的研發(fā)資金為a元,以后每月新產(chǎn)品的研發(fā)資金與上月相比增長率都是x,則該廠今年三月份新產(chǎn)品的研發(fā)資金y(元)關(guān)于x的函數(shù)關(guān)系式為y= . 解析:一月份新產(chǎn)品的研發(fā)資金為a元,二月份起,每月新產(chǎn)品的研發(fā)資金與上月相比增長率都是x,二月份研發(fā)資金為a(1+x),三月份的研發(fā)資金y=a(1+x)(1+x)=a(1+x)2.故填a(1+x)2.a(1+x)2謝謝大家九年級九年級數(shù)學下冊數(shù)學下冊北師北師第二章第二章 二次函數(shù)二次函數(shù) 學習新知學習新知檢測反饋檢測反饋學學 習

57、習 新新 知知在你打籃球或觀看籃球比賽時,你是否注意投籃時籃球的運行路線是什么樣的?這種運行路線所形成的圖形在我們?nèi)粘I钪袩o處不在,比如噴泉流經(jīng)過的路線、一些拱形橋的橋拱的形狀、導(dǎo)彈運行的路線等.xy0 0-4-3-2 -11234108642-21y=x2 2畫二次函數(shù)y=x2的圖象(1)列表.(2)在直角坐標系中描點.(3)用光滑的曲線連接各點.x -3-2-1 0 1 2 3 y=x2 9 4 1 0 1 4 9 二次函數(shù)y=x2的性質(zhì)(5)圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?請你找出幾對對稱點,并與同伴進行交流.【議一議】對于二次函數(shù)y=x2的圖象:(1)你能描述圖象的形狀

58、嗎?與同伴進行交流.(2)圖象與x軸有交點嗎?如果有,交點坐標是什么?(3)當x0時呢?(4)當x取什么值時,y的值最小?最小值是什么?你是如何知道的?函數(shù)表達式函數(shù)表達式y(tǒng)= =x2大致圖象大致圖象開口方向開口方向?qū)ΨQ軸對稱軸頂點坐標頂點坐標增減性增減性最值最值二次函數(shù)二次函數(shù)y=x2的性質(zhì)的性質(zhì)向上向上y軸軸(或直線或直線x= =0) )原點原點(0, ,0) )當當x 0時時,y隨隨x的增大而增大的增大而增大當當x= =0時時,y有最小有最小值值,最小值是最小值是0 xy0 0-4-3 -2 -11234-10-8-6-4-22-1y=-x2【做一做】二次函數(shù)y=-x2的圖象是什么形狀?

59、先想一想,然后畫出它的圖象.它與二次函數(shù)y=x2的圖象有什么關(guān)系?指出二次函數(shù)y=-x2的正確圖象,并指出其他圖象的錯誤.不正確,連線不平滑.不正確,圖象不對稱.不正確,圖象不完整.正確正確.畫二次函數(shù)圖象的注意事項:(1)列表時,選取的自變量的值,應(yīng)以O(shè)為中心,左邊取-1,-2,-3,右邊對應(yīng)取1,2,3(取互為相反數(shù)的一對數(shù)),不要一邊多,一邊少,不對稱.(2)描點時要嚴格按照表中所列的對應(yīng)值描點,絕對不能把點的位置描錯.(3)按自變量從小到大的順序依次畫線,連線時用光滑的曲線連接各點,不能用折線連接.(4)圖象是延伸的,不要畫成有明確的端點.函數(shù)表達式函數(shù)表達式y(tǒng)= =- -x2大致圖象

60、大致圖象開口方向開口方向?qū)ΨQ軸對稱軸頂點坐標頂點坐標增減性增減性最值最值二次函數(shù)二次函數(shù)y=-x2的性質(zhì)的性質(zhì)向下向下y軸軸(或直線或直線x= =0) )原點原點(0, ,0) )當當x 0時時,y隨隨x的增大而減小的增大而減小當當x= =0時時,y有最大有最大值值,最小值是最小值是0知識拓展二次函數(shù)y=x2的圖象與二次函數(shù)y=-x2的圖象的關(guān)系:(1)二次函數(shù)y=x2的圖象與二次函數(shù)y=-x2的圖象關(guān)于x軸對稱.(2)如果把兩個圖象看成一個圖形,這個圖形是中心對稱圖形,對稱中心是坐標原點.檢測反饋檢測反饋1.下列說法正確的是()A.二次函數(shù)y=x2圖象上的點,其縱坐標的值隨著x值的增大而增大

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論