版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為( )A6B8C10D122已知定義在上的可導
2、函數(shù)滿足,若是奇函數(shù),則不等式的解集是( )ABCD3為虛數(shù)單位,則的虛部為( )ABCD4集合中含有的元素個數(shù)為( )A4B6C8D125已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為( )A1BC2D6一個幾何體的三視圖如圖所示,則這個幾何體的體積為( ) ABCD7已知直線與圓有公共點,則的最大值為( )A4BCD8圓錐底面半徑為,高為,是一條母線,點是底面圓周上一點,則點到所在直線的距離的最大值是( )ABCD9 下列與的終邊相同的角的表達式中正確的是()A2k45(kZ)Bk360(kZ)Ck360315(kZ)Dk (kZ)10已知集合,則( )ABCD11已知拋物線和
3、點,直線與拋物線交于不同兩點,直線與拋物線交于另一點給出以下判斷:直線與直線的斜率乘積為;軸;以為直徑的圓與拋物線準線相切.其中,所有正確判斷的序號是( )ABCD12袋中裝有標號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的和是3的倍數(shù),則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13在的展開式中,的系數(shù)等于_14已知隨機變量服從正態(tài)分布,若,則_.15已知是第二象限角,且,則_.16在三棱錐中,兩兩垂直且,點為的外接球上任意一點,則的最大值為_.三、解答題:共70分。解
4、答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.(1)若,且恰為的左焦點,求的兩條漸近線的方程;(2)若,且,求實數(shù)的值;(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.18(12分)在平面直角坐標系中,已知直線l的參數(shù)方程為(t為參數(shù)),在以坐標原點O為極點,x軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線C的極坐標方程是.(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C相交于兩點A,B,求線段的長.19(12分)如圖,正方體的棱長為2,為棱
5、的中點.(1)面出過點且與直線垂直的平面,標出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.20(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù))以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(1)求和的直角坐標方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離21(12分)過點作傾斜角為的直線與曲線(為參數(shù))相交于M、N兩點(1)寫出曲線C的一般方程;(2)求的最小值22(10分)如圖所示,在三棱錐中,點為中點(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值參考答案一、選擇題:本題共12小題,每小
6、題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】推導出,且,設中點為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,且,由為等腰直角三角形可知,設中點為,則平面,解得.故選:D【點睛】本題考查三視圖和錐體的體積計算公式的應用,屬于中檔題.2A【解析】構造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【詳解】構造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當時,所以,所以.由得,所以,故不等式的解集為.故選:A【點睛】本小題主要考查構造函數(shù)法解不等式
7、,考查利用導數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.3C【解析】利用復數(shù)的運算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復數(shù)的運算以及復數(shù)的概念,注意復數(shù)的虛部為,不是,本題為基礎題,也是易錯題.4B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B5B【解析】畫出約束條件的可行域,利用目標函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標函數(shù)最
8、值求解參數(shù)值,數(shù)形結合思想,分類討論是解題的關鍵,屬于中檔題.6B【解析】還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.7C【解析】根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即 ,解得,此時, 因為,在遞增,所以的
9、最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關系以及二次函數(shù)的性質(zhì),還考查了運算求解的能力,屬于中檔題.8C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點是底面圓周上一點,在底面的射影為;,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點睛:本題考查空間點線面距離的求法,考查空間想象能力以及計算能力,解題的關鍵是作出軸截面圖形,屬中檔題9C【解析】利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2k (kZ),但是角度制與弧度制不能混
10、用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2) 與終邊相同的角=+ 其中.10B【解析】計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.11B【解析】由題意,可設直線的方程為,利用韋達定理判斷第一個結論;將代入拋物線的方程可得,從而,進而判斷第二個結論;設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點設,到準線的距離分別為,的半徑為,點到準線的距離為,顯然,三點不共線,進而判斷第三個結論.【詳解】解:由題意,可設直線的方程為,代入拋物線的方
11、程,有設點,的坐標分別為,則,所則直線與直線的斜率乘積為所以正確將代入拋物線的方程可得,從而,根據(jù)拋物線的對稱性可知,兩點關于軸對稱,所以直線軸所以正確如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點設,到準線的距離分別為,的半徑為,點到準線的距離為,顯然,三點不共線,則所以不正確故選:B.【點睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關系等基礎知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查數(shù)形結合思想、化歸與轉(zhuǎn)化思想,屬于難題12C【解析】先確定摸一次中獎的概率,5個人摸獎,相當于發(fā)生5次試驗,根據(jù)每一次發(fā)生的概率,利用獨立重復試驗的公式得到結果【詳解】從
12、6個球中摸出2個,共有種結果,兩個球的號碼之和是3的倍數(shù),共有摸一次中獎的概率是,5個人摸獎,相當于發(fā)生5次試驗,且每一次發(fā)生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故選:【點睛】本題主要考查了次獨立重復試驗中恰好發(fā)生次的概率,考查獨立重復試驗的概率,解題時主要是看清摸獎5次,相當于做了5次獨立重復試驗,利用公式做出結果,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。137【解析】由題,得,令,即可得到本題答案.【詳解】由題,得,令,得x的系數(shù).故答案為:7【點睛】本題主要考查二項式定理的應用,屬基礎題.140.4【解析】因為隨機變量服從正態(tài)分布,利用正態(tài)曲線的對稱性,即
13、得解.【詳解】因為隨機變量服從正態(tài)分布所以正態(tài)曲線關于對稱,所.【點睛】本題考查了正態(tài)分布曲線的對稱性在求概率中的應用,考查了學生概念理解,數(shù)形結合,數(shù)學運算的能力,屬于基礎題.15【解析】由是第二象限角,且,可得,由及兩角和的正切公式可得的值.【詳解】解:由是第二象限角,且,可得,由,可得,代入,可得,故答案為:.【點睛】本題主要考查同角三角函數(shù)的基本關系及兩角和的正切公式,相對不難,注意運算的準確性.16【解析】先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結合向量的運算,將問題轉(zhuǎn)化為求球體表面一點到外心距離最大的問題,即可求得結果.【詳解】因為兩兩垂直且,故三棱錐的外接球就是對應棱長為2的正
14、方體的外接球.且外接球的球心為正方體的體對角線的中點,如下圖所示:容易知外接球半徑為.設線段的中點為,故可得,故當取得最大值時,取得最大值.而當在同一個大圓上,且,點與線段在球心的異側(cè)時,取得最大值,如圖所示:此時,故答案為:.【點睛】本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運算以及數(shù)量積運算,屬綜合性困難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2);(2)見解析【解析】(1)由圓的方程求出點坐標,得雙曲線的,再計算出后可得漸近線方程;(2)設,由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,由先求出,回代后求得坐標,計算;(3)由已知得,
15、設,由圓方程與雙曲線方程聯(lián)立,消去后整理,可解得,求出,從而可得,由,可知滿足要求的點不存在【詳解】(1)由題意圓方程為,令得,即,漸近線方程為(2)由(1)圓方程為,設,由得,(*),所以,即,解得,方程(*)為,即,代入雙曲線方程得,在第一、四象限,(3)由題意,設由得:,由得,解得,所以,當且僅當三點共線時,等號成立,軸上不存在點,使得【點睛】本題考查求漸近線方程,考查圓與雙曲線相交問題考查向量的加法運算,本題對學生的運算求解能力要求較高,解題時都是直接求出交點坐標難度較大,屬于困難題18(1)l:,C:;(2)【解析】(1)直接利用轉(zhuǎn)換關系,把參數(shù)方程直角坐標方程和極坐標方程之間進行轉(zhuǎn)
16、換;(2)由(1)可得曲線是圓,求出圓心坐標及半徑,再求得圓心到直線的距離,即可求得的長.【詳解】(1)由題意可得直線:,由,得,即,所以曲線C:.(2)由(1)知,圓,半徑.圓心到直線的距離為:.【點睛】本題考查直線的普通坐標方程、曲線的直角坐標方程的求法,考查弦長的求法、運算求解能力,是中檔題19(1)見解析(2).【解析】(1)與平面垂直,過點作與平面平行的平面即可(2)建立空間直角坐標系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,分別為邊,的中點,則垂直于平面.(2)建立如圖所示的空間直角坐標系,則,所以,.設平面的一個法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.
17、(若將作為該平面法向量,需證明與該平面垂直)【點睛】考查確定平面的方法以及線面角的求法,中檔題.20(1)(2)最大距離為【解析】(1)直接利用極坐標方程和參數(shù)方程的公式計算得到答案.(2)曲線的參數(shù)方程為,設,計算點到直線的距離公式得到答案.【詳解】(1)由,得,則曲線的直角坐標方程為,即直線的直角坐標方程為(2)可知曲線的參數(shù)方程為(為參數(shù)),設,則到直線的距離為,所以線段的中點到直線的最大距離為【點睛】本題考查了極坐標方程,參數(shù)方程,距離的最值問題,意在考查學生的計算能力.21(1);(2)【解析】(1)將曲線的參數(shù)方程消參得到普通方程;(2)寫出直線MN的參數(shù)方程,將參數(shù)方程代入曲線方程,并將其化為一個關于的一元二次方程,根據(jù),結合韋達定理和余弦函數(shù)的性質(zhì),即可求出的最小值.【詳解】(1)由曲線C的參數(shù)方程(是參數(shù)),可得,即曲線C的一般方程為(2)直線MN的參數(shù)方程為(t為參數(shù)),將直線MN的參數(shù)方程代入曲線,得,整理得,設M,N對應的對數(shù)分別為,則,當時,取得最小值為【點睛】該題考查的是有關參數(shù)方程的問題,涉及到的知識點有參數(shù)方程向普通方程的轉(zhuǎn)化,直線的參數(shù)方程的應用,屬于簡單題目.22(1)答案見解析(2)【解析】(1)通過證明平面,證得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GBT 21470-2008錘上鋼質(zhì)自由鍛件機械加工余量與公差 盤、柱、環(huán)、筒類》專題研究報告
- 《GBT 14296-2008空氣冷卻器與空氣加熱器》專題研究報告
- 道路養(yǎng)護安全培訓方案模板課件
- 2025-2026年湘教版初三歷史上冊期末試題解析+答案
- 2026年六年級數(shù)學上冊期末試題+解析
- 2026年江蘇高考生物試卷含答案
- 2025-2026年人教版五年級數(shù)學上冊期末試題解析及答案
- 《中國法布雷病超聲心動圖規(guī)范化篩查指南(2024版)》解讀
- 中考語文文言文對比閱讀(全國)01 《詠雪》對比閱讀(原卷版)
- 邊城課件基本知識
- 礦產(chǎn)企業(yè)管理辦法
- 2025秋季學期國開電大專本科《經(jīng)濟法學》期末紙質(zhì)考試名詞解釋題庫珍藏版
- 建筑設計防火規(guī)范-實施指南
- 2025國開《中國古代文學(下)》形考任務1234答案
- 肺部感染中醫(yī)護理
- 租地合同協(xié)議書合同
- 《肺炎的CT表現(xiàn)》課件
- 糧食倉儲設施建設維修資金申請報告
- 腦器質(zhì)性精神障礙護理查房
- 中考英語聽力命題研究與解題策略省公開課金獎全國賽課一等獎微課獲獎課件
- 物聯(lián)網(wǎng)智能家居設備智能控制手冊
評論
0/150
提交評論