版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Mechanical Theorem Proving in GeometryGao Jun-yu*, Zhang Cheng-dongCangzhou Normal University Hebei province,Cangzhou city,College Road, 061001.e-mail: AbstractMechanical theorem proving in geometry plays an important role in the research of automated reasoning. In this paper, we intro
2、duce three kinds of computerized methods for geometrical theorem proving: the first is Wu s method in the international community, the second is elimination point method and the third is lower dimension method.Keywords: geometric theorem, Wus method, elimination point method, lower dimension methodC
3、opyright 2012 Universitas Ahmad Dahlan. All rights reserved.1. Introduction HYPERLINK /kcms/detail/%20%20%20%20%20%20%20%20%20%20%20%20search.aspx?dbcode=CJFQ&sfield=kw&skey=Mechanical+Proving t _blank Mechanical Proving, that is, mechanization method, is to find a method which can be computed steep
4、ly step according to a certain rules. Today we usually refer it as algorithm. The algorithm is applied in the computer programming, mathematical mechanization, and mathematical theorems, This realizes mathematical theorem to be proved with computer.Mathematics in ancient China is nearly a kind of me
5、chanic mathematics. Today, the method of Cartesian coordination gives this direction a solid step, and provides a simple and clear method for the proof of geometrictheoremsmechanization.The mechanical thought of mathematics in ancient China made a deeply influence in Wu Wen-juns work about mathemati
6、cs mechanization. In 1976, academician Wu Wen-jun began to enter the field of mathematicsmechanization. Since then , he forwards to the mechanization method which establish theoretical basis for the mechanization of mental work. He proves a large class of elementary geometry problems by computer. It
7、 is unprecedented in our country. This is a machine proving method and known as Wus method throughout the world. It is the first system for mechanic proving method and it can give the proof for nontrivial theorem. He makes the Study of Theorem Proving in Geometry more mature1-6.In 1992, Academician
8、Zhang Jing-zhong visited the USA to research mathematics mechanization and cooperated with Zhou Xian-qing and Gao Xiaos-han. The HYPERLINK /kcms/detail/%20%20%20%20%20%20%20%20%20%20%20%20search.aspx?dbcode=CJFQ&sfield=kw&skey=+Elimination+Point+Method t _blank elimination point method is one that i
9、s based on area method. This brings readable Proof to be realized by computer for the first time. This result is significant for academic and mechanical theorem proving in geometry.In 1998,Yang Lu created HYPERLINK /kcms/detail/%20%20%20%20%20%20%20%20%20%20%20%20search.aspx?dbcode=CJFQ&sfield=kw&sk
10、ey=+lower+Dimension+Method t _blank lower dimension method. He obtains the achievement in the mechanic proof of inequalities. The achievement of this method is as good as Wus method and HYPERLINK /kcms/detail/%20%20%20%20%20%20%20%20%20%20%20%20search.aspx?dbcode=CJFQ&sfield=kw&skey=+Elimination+Poi
11、nt+Method t _blank elimination point method.It is a great achievement in the field of mechanical theorem proving in geometry by Chinese mathematicians3-8.Next, we will introduce the three methods respectly.2. Wus methodWu Wen-jun presents a method which is called Wus method. It is based on Quaternio
12、n of traditional mathematics. This method has been solves a series of actual problems in theoretical physics, computer science and other basic science fields. We can use Wus method to find a proof for the geometric theorem in computer. We introduce three main steps of this method as follows4-10:Step
13、 1 Choosing a good coordinate system, free variable and restrict variable.Let us denote the free variables as , and suppose they have nothing to do with the conditions of geometric problems. Similarly, let us denote the restrict variables as which are restricted by the conditions of geometric proble
14、ms. In this way, a geometric problems turns into a polynomial problem: (1)The conclusions of geometric problem can be expressed as a polynomial problem. (2)Or, it can be represented as a family of palynomial.Step 2 TriangulationAccording to the restrict variable, the rearrange of (1) is referred as
15、triangulation. In another word, the systems of equation (1) is changed as: (3)Step 3 Gradual DivisionDenote the polynomial in (3) as , in (2)is divided by , and the remainder of division algorithm is denoted as .In order to avoid the fractional in quotient, we multiply to, that is, (4)The remainder
16、is divided by (5)So, repeating this division, at last we get: (6)Then, let us interate all the equations above and replace the coefficient of of all equations above with , moreover, we obtain:Dividing two cases to discus: with and .Case 1: If, then, under the condition of and the non-degenerate cond
17、ition , there is , the required result follow.Case 2: If , then the proposition is not true. We present an example to show that how to use HYPERLINK /kcms/detail/%20%20%20%20%20%20%20%20%20%20%20%20search.aspx?dbcode=CJFQ&sfield=kw&skey=+Wu%e2%80%99s+Method t _blank Wus Method in solving problem. Ex
18、ample 1 The problem is: The midline on the hypotenuse in a right-angle triangle equals to half of the hypotenuseUsing HYPERLINK /kcms/detail/%20%20%20%20%20%20%20%20%20%20%20%20search.aspx?dbcode=CJFQ&sfield=kw&skey=+Wu%e2%80%99s+Method t _blank Wus Method to get the solution of the above problem is
19、: as shown in Figure 1, first, choose coordinates to right-angle triangle. The two right-angle sides of and are as axis and axis respectively. The vertex of the right angle is ,.We take as the midpoint of hypotenuse and set up their coordinates as ,and respectively.OOB (0,)A (,0)D (,)Figure 1Because
20、 are arbitrary, this indicate that coordinates of are free variables and the midpoint is restricted by the hypothesis, so the coordinates of are restrict variables.Applying Wus Method , we solve this problem as follows:Step 1 Choosing a good coordinate system, free variable and restrict variable.Sup
21、posing is the midpoint of the , by the midpoint formula we can get:Using step 1 in Wus Method , we only need to prove that the , by the distant formula: Step 2 TriangulationBecause just has the restrict variable , and just has the restrict variable , so , themselves have been trianglize. So, it can
22、be written as:Step 3 Gradual Division is divided by ,and the division is:That is, (7)where is divided by , so, (8)Where . Using (8) to express (7) ,we will receiveWhen , The proposition has been proved.3.Zhangs Elimination Point MethodWe introduce Zhangs Elimination Point Method as follows1-9.Zhang
23、Jing-zhong gives an effective method for what is called elimination point method, the method is based on the ancient area method, mainly used for deleting the constraint points. This idea of Zhangs Elimination Point Method is relative to the assumed conditions and area method, and the order of vanis
24、h point depends on the final constraint points. Then it is eliminated from back to front one by one. At last, the left point is total eliminated, if the number is equal to the right number, the proposition is permitted. To use Zhangs Elimination Point Method effectively, we repeat the public edge th
25、eorem in the following:Next, we give a commonly important theorem of elimination point method:Public edge theorem (1970,Zhang): If the line and line to , thenPublic edge have four cases are shown as (a)-(d) in Figure 2 respectively.PPQABM(a)PQABM(b)PABM(c)QPQABM(d)Figure 2We give an example to expre
26、ss the Public edge theorem of Zhangs theorem.Example 2: The problem is : Verify that the diagonal of a parallelogram is mutual divided.To solve this problem is the following:Put a parallelogram as a diagram in Figure 3.1、Do a parallelogram.2、Connecting the diagonals which intersect at .We only need
27、to verify ,. is the restriction point which finally made. So, firstly to remove the point . (Public edge theorem)AABCDEFigure 3Therefore, we can prove , and as the above similar way.4. HYPERLINK /kcms/detail/%20%20%20%20%20%20%20%20%20%20%20%20search.aspx?dbcode=CJFQ&sfield=kw&skey=+lower+Dimension+
28、Method t _blank Lower Dimension MethodWith the establishment of HYPERLINK /kcms/detail/%20%20%20%20%20%20%20%20%20%20%20%20search.aspx?dbcode=CJFQ&sfield=kw&skey=+Wu%e2%80%99s+Method t _blank Wus method and HYPERLINK /kcms/detail/%20%20%20%20%20%20%20%20%20%20%20%20search.aspx?dbcode=CJFQ&sfield=kw&
29、skey=+Elimination+Point+Method t _blank elimination point method, the Machine Proving of automated theorem proving of equation theorem has been solved ,but the Machine Proving of automated theorem proof of equation theorem has been difficult to achieve. Therefore, YangLu and many other scholars work
30、ed for the establishment of a new algorithm which we called HYPERLINK /kcms/detail/%20%20%20%20%20%20%20%20%20%20%20%20search.aspx?dbcode=CJFQ&sfield=kw&skey=+lower+Dimension+Method t _blank lower dimension method. The work in the field of machine theorem proving by Chinese mathematicians is a miles
31、tone2-12.The HYPERLINK /kcms/detail/%20%20%20%20%20%20%20%20%20%20%20%20search.aspx?dbcode=CJFQ&sfield=kw&skey=+lower+Dimension+Method t _blank lower dimension method can be divided into three courses:(1) Work out about boundary surface of inequality 、.(2) Using the boundary surface of the first ste
32、p the parameter space was divided into finite cell decompositions, we get many connected open sets: 、, then from the connected open sets we select checkpoint for at least one abbrevd . (3) using the finite number of checkpoints 、 to verify the correctness of inequality. If every established the prop
33、osition is true, otherwise, the proposition is false.5. ConclusionThe three methods present different ways to deal with different problems. All of them are important in automated reasoning fields, when someone discusses a problem in automated reasoning fields, the first he (or she) would consider wh
34、ich of the three methods is just best for the problem, and then, he (or she) will obtain the best consequences. We hope our introduction is good for him (or her) , now and in the future.References1 Wu Wen-jun. Elementary geometry truss proof and mechanization J. Chinese science, 1997, (6), (in chine
35、se).2 Wu Wen-jun. Geometric theorem machine the basic principle of proof M. Beijing: science press, 1984, (in chinese).3 Zhang Jing-zhong. Away on collocation method J. Mathematics teacher, 1995, (1), (in chinese).4 Zhang Jing-zhong.The computer how to work out geometric problem M. Beijing: tsinghua
36、 university press, 2000, (in chinese).5 Zhang Jing-zhong, Gao Xiao-shan, Zhou Xian-qing. Based on the geometry information before extrapolation search system J. Journal of computer, 1996, 38 (10), (in chinese).6 Yang Lu. Inequality proof dimension reduction algorithm of the machine and the general p
37、rogram J. High technology communication, 1998 (7), (in chinese).7 B. Liu and Y.K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems Vol.10, No.4 ,2002.8 J.A.Bondy and U.S.R.Murty. Graph Theory With ApplicationsM.New York: Elsevier Science Publi
38、shing Co.Inc,1976. 9 B.Korte and Vvgen. Combinatorial Optimization Theory and AlgorithmsM. Berlin:Springer,2000.10 Hua Mao, Sanyang Liu, Some Properties of the Closure Operator of a Pi-space, Kyungpook Mathematical Journal, 2011,51(3).11 Sandip Chanda Abhinandan De .Congestion Relief of Contingent P
39、ower Network with Evolutionery Optimisation Algorithm, TELKOMNIKA Indonesian Journal of Electrical Engeering ,Vol.10 No.1 March 2012,12 Hadi Arabshahi,Static Characterization of InAs/AlGaAs Broadband Self-Assembled Quantum Dot Lasers, TELKOMNIKA Indonesian Journal of Electrical Engeering, Vol.10 No.
40、1 March 2012,附錄資料:不需要的可以自行刪除設(shè)備大修規(guī)程1、目的消除設(shè)備存在的缺陷,保證生產(chǎn)設(shè)備恢復(fù)原有性能,有效延長(zhǎng)設(shè)備的壽命、減小設(shè)備故障率、提高生產(chǎn)效益,減輕設(shè)備維修量。2、適用范圍廠區(qū)主要生產(chǎn)設(shè)備3、職責(zé) 3.1設(shè)備經(jīng)理(主管)根據(jù)生產(chǎn)情況,以及通過(guò)設(shè)備維修數(shù)據(jù)分析設(shè)備情況,制定設(shè)備大修計(jì)劃,并且購(gòu)置設(shè)備大修配件。3.2事務(wù)助理根據(jù)要大修的設(shè)備,編制設(shè)備大修記錄單、設(shè)備大修驗(yàn)收記錄單。3.3大修班班長(zhǎng)根據(jù)要大修的設(shè)備,擬定大修計(jì)劃,列出大修配件名單交設(shè)備主管,準(zhǔn)備大修所有器具,做好大修安全防護(hù)措施。3.4操作人員極力配合大修人員的工作,順利開(kāi)展大修。4、工作規(guī)程4.1大修準(zhǔn)
41、備工作4.1.1設(shè)備主管根據(jù)生產(chǎn)情況、設(shè)備情況提前一周制定大修計(jì)劃,并落實(shí)到大修班和生產(chǎn)部門。4.1.2設(shè)備事物助理根據(jù)大修設(shè)備,編制設(shè)備大修記錄單給大修班、大修驗(yàn)收記錄單給設(shè)備主管。4.1.3大修班班長(zhǎng)根據(jù)要大修的設(shè)備查閱資料,擬定大修安排計(jì)劃,列大修配件清單交設(shè)備主管,落實(shí)大修人員,準(zhǔn)備設(shè)備大修所需器具,做好大修安全防護(hù)措施。4.1.4設(shè)備主管購(gòu)置設(shè)備大修所需配件,在大修前配齊。4.1.5操作人員在設(shè)備大修前,做好設(shè)備清潔衛(wèi)生,清理設(shè)備場(chǎng)地,挪開(kāi)生產(chǎn)加工物品,提前停止設(shè)備,進(jìn)入待修狀態(tài)。4.2設(shè)備大修實(shí)施 4.2.1大修班班長(zhǎng)組織指導(dǎo)大修工作,大修班根據(jù)大修要求嚴(yán)格對(duì)設(shè)備進(jìn)行大修。 4.2
42、.2填寫設(shè)備大修單,記錄在大修中更換的配件。 4.2.3設(shè)備主管在大修結(jié)束后,對(duì)大修設(shè)備進(jìn)行驗(yàn)收,記錄設(shè)備運(yùn)行是否正常,運(yùn)行參數(shù)是否合格,驗(yàn)收合格后投入運(yùn)行。4.2.4設(shè)備事務(wù)助理在設(shè)備驗(yàn)收合格后,對(duì)大修記錄、驗(yàn)收記錄進(jìn)行存檔,并完善ERP平臺(tái)數(shù)據(jù)記錄。4.3設(shè)備大修規(guī)范4.2.1設(shè)備大修的周期為2年進(jìn)行一次。4.2.2設(shè)備大修是以大修班為主、操作人員為輔,對(duì)設(shè)備有效的大修。 4.2.3根據(jù)設(shè)備秩序要求,結(jié)構(gòu)要求,對(duì)設(shè)備全部或部分解體,把拆卸配件歸類標(biāo)記、存放。 4.2.4嚴(yán)格檢查設(shè)備機(jī)械結(jié)構(gòu)部分和配件,清理結(jié)構(gòu)污垢,清洗機(jī)械配件,更換潤(rùn)滑油,更換老化配件。 4.2.5檢查設(shè)備氣動(dòng)、油壓系統(tǒng),
43、清理氣管、油管,清洗油箱、閥芯等,更換沉淀老化液壓油。 4.2.6檢查電氣部分,更換老化線路、電器元件,更新設(shè)備配置,緊固各接線端子;檢驗(yàn)電氣設(shè)備絕緣、阻值等參數(shù),更換檢修參數(shù)不合格的電氣設(shè)備;對(duì)配電箱、配電柜等進(jìn)行清潔吹灰。 4.2.7沒(méi)有允許,嚴(yán)禁改動(dòng)設(shè)備原有結(jié)構(gòu),根據(jù)設(shè)備結(jié)構(gòu)還原裝配設(shè)備。4.2.8完成大修后,要清潔大修場(chǎng)所,保持設(shè)備環(huán)境的清潔衛(wèi)生,對(duì)更換的配件統(tǒng)一規(guī)范放置。相關(guān)文件和記錄 5.1設(shè)備大修單 5.2設(shè)備大修驗(yàn)收單附件: 設(shè)備維修及故障處理流程圖1設(shè)備維修流程設(shè)備操作人員發(fā)現(xiàn)故障填設(shè)備保修單注明設(shè)備型號(hào)(序號(hào))設(shè)備操作人員發(fā)現(xiàn)故障填設(shè)備保修單注明設(shè)備型號(hào)(序號(hào))、簡(jiǎn)述故障情
44、況,生產(chǎn)班(組)長(zhǎng)簽字報(bào)機(jī)修班特殊情況可直接電話報(bào)修事后及時(shí)補(bǔ)寫報(bào)修單機(jī)修班(組)長(zhǎng)及時(shí)(15分鐘內(nèi))安排檢修或機(jī)修工接報(bào)修單直接檢修維修機(jī)修人員主導(dǎo),嚴(yán)格按照設(shè)備檢修規(guī)程、安全操作、準(zhǔn)確判斷故障、按時(shí)保質(zhì)完成,設(shè)備操作人員配合輔助設(shè)備配件在機(jī)修班庫(kù)房或公司配件庫(kù)領(lǐng)取(中夜班聯(lián)系庫(kù)房管理員)檢修技術(shù)難點(diǎn)(問(wèn)題)及時(shí)詢問(wèn)班(組)長(zhǎng)和老員工,特殊輔助機(jī)具及時(shí)聯(lián)系車間主任及班組長(zhǎng)支援重大問(wèn)題及時(shí)聯(lián)系設(shè)備部經(jīng)理(主管)直至向公司分管領(lǐng)導(dǎo)匯報(bào)一般情況當(dāng)班必須檢修完畢,如特殊情況必須與下班交接(故障情況、檢修進(jìn)度等)做好記錄檢修完畢操作人員進(jìn)行試車驗(yàn)收,填寫維修情況、維修時(shí)間(報(bào)修單)設(shè)備部主管(專項(xiàng)助理
45、)每周收集統(tǒng)計(jì)報(bào)修單,考評(píng)機(jī)修工檢修時(shí)間及設(shè)備維修時(shí)間,周會(huì)通報(bào)設(shè)備部經(jīng)理(主管)每月根據(jù)設(shè)備維修時(shí)間統(tǒng)計(jì),分析(改進(jìn))設(shè)備維修狀況、設(shè)備運(yùn)行狀況及操作與維修人員綜合素質(zhì),形成月度總結(jié)上報(bào)公司2設(shè)備事故處理流程設(shè)備操作人員、車間主任、班組長(zhǎng)或相關(guān)發(fā)現(xiàn)人員上報(bào)設(shè)備操作人員、車間主任、班組長(zhǎng)或相關(guān)發(fā)現(xiàn)人員上報(bào)設(shè)備部、機(jī)修班維修人員或安全巡檢人員提出設(shè)備部經(jīng)理(主管)主導(dǎo)召集設(shè)備事故分析會(huì),設(shè)備操作人員、所屬車間主任班組長(zhǎng)、機(jī)修班(組)長(zhǎng)、相關(guān)維修人員參加,生產(chǎn)部、安環(huán)部有關(guān)人員列席(如發(fā)生人生傷害事故由安環(huán)部主導(dǎo))由設(shè)備操作人員、車間主任、班組長(zhǎng)或相關(guān)發(fā)現(xiàn)人員闡述事故經(jīng)過(guò),維修人員敘述維修經(jīng)過(guò)、損
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆上海市復(fù)旦附中浦東分校數(shù)學(xué)高一上期末調(diào)研試題含解析
- 班會(huì)周年活動(dòng)策劃方案(3篇)
- 社區(qū)食堂休息驛站管理制度(3篇)
- 酒店餐廳取消訂單管理制度(3篇)
- 風(fēng)動(dòng)錨桿鉆機(jī)管理制度(3篇)
- 《GA 862-2010機(jī)動(dòng)車駕駛證業(yè)務(wù)信息采集和駕駛證簽注規(guī)范》專題研究報(bào)告
- 兼職培訓(xùn)教學(xué)課件
- 養(yǎng)老院信息化管理與服務(wù)制度
- 企業(yè)商務(wù)合作流程規(guī)范制度
- 企業(yè)財(cái)務(wù)預(yù)算管理制度
- 湖南省2025-2026學(xué)年七年級(jí)歷史上學(xué)期期末復(fù)習(xí)試卷(含答案)
- 2026年中國(guó)熱帶農(nóng)業(yè)科學(xué)院南亞熱帶作物研究所第一批招聘23人備考題庫(kù)完美版
- 2026新疆阿合奇縣公益性崗位(鄉(xiāng)村振興專干)招聘44人考試參考試題及答案解析
- 紡織倉(cāng)庫(kù)消防安全培訓(xùn)
- 器官移植術(shù)后排斥反應(yīng)的風(fēng)險(xiǎn)分層管理
- 虛擬電廠關(guān)鍵技術(shù)
- 事業(yè)單位清算及財(cái)務(wù)報(bào)告編寫范本
- 護(hù)坡綠化勞務(wù)合同范本
- 臨床績(jī)效的DRG與CMI雙指標(biāo)調(diào)控
- 護(hù)坡施工安全專項(xiàng)方案
- 2026年湛江日?qǐng)?bào)社公開(kāi)招聘事業(yè)編制工作人員備考題庫(kù)及完整答案詳解
評(píng)論
0/150
提交評(píng)論