廣東省惠州市惠東2023學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
廣東省惠州市惠東2023學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
廣東省惠州市惠東2023學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
廣東省惠州市惠東2023學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
廣東省惠州市惠東2023學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2023年高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學(xué)成績(jī)X近似服從正態(tài)分布,且從中隨機(jī)抽取參加此次考試的學(xué)生500名,估計(jì)理科數(shù)學(xué)成績(jī)不低于110分的學(xué)生人數(shù)約為( )A40B60C80D10

2、02函數(shù)的圖象大致是()ABCD3設(shè)分別是雙曲線的左右焦點(diǎn)若雙曲線上存在點(diǎn),使,且,則雙曲線的離心率為( )AB2CD4設(shè)命題函數(shù)在上遞增,命題在中,下列為真命題的是( )ABCD5若雙曲線:的一條漸近線方程為,則( )ABCD6已知定義在上的函數(shù)滿足,且當(dāng)時(shí),.設(shè)在上的最大值為(),且數(shù)列的前項(xiàng)的和為.若對(duì)于任意正整數(shù)不等式恒成立,則實(shí)數(shù)的取值范圍為( )ABCD7復(fù)數(shù)()ABC0D8若滿足,且目標(biāo)函數(shù)的最大值為2,則的最小值為( )A8B4CD69復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)( )A3BCD10如圖,在中,點(diǎn),分別為,的中點(diǎn),若,且滿足,則等于( )A2BCD11若實(shí)數(shù)x,

3、y滿足條件,目標(biāo)函數(shù),則z 的最大值為()AB1C2D012若,則下列關(guān)系式正確的個(gè)數(shù)是( ) A1B2C3D4二、填空題:本題共4小題,每小題5分,共20分。13已知數(shù)列的前項(xiàng)和為,且成等差數(shù)列,數(shù)列的前項(xiàng)和為,則滿足的最小正整數(shù)的值為_.14已知向量,若,則_.15已知函數(shù),若函數(shù)有個(gè)不同的零點(diǎn),則的取值范圍是_16設(shè)數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),都有,則_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形,在上,且面. (1)求證: 是的中點(diǎn);(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不

4、存在,說明理由.18(12分)如圖,四棱錐中,底面ABCD為菱形,平面ABCD,BD交AC于點(diǎn)E,F(xiàn)是線段PC中點(diǎn),G為線段EC中點(diǎn)求證:平面PBD;求證:19(12分)如圖所示,三棱柱中,平面,點(diǎn),分別在線段,上,且,是線段的中點(diǎn).()求證:平面;()若,求直線與平面所成角的正弦值.20(12分)已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓 交于,兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.21(12分)已知,(其中).(1)求;(2)求證:當(dāng)時(shí),22(10分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為

5、極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績(jī)X近似服從正態(tài)分布,則正態(tài)分布曲線的對(duì)稱軸為,根據(jù)正態(tài)分布曲線的對(duì)稱性,求得,所以該市某校有500人中,估計(jì)該校數(shù)學(xué)成績(jī)不低于110分的人數(shù)為人,故選:.【點(diǎn)睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學(xué)生分析問題的能力,難度容易.2C【

6、解析】根據(jù)函數(shù)奇偶性可排除AB選項(xiàng);結(jié)合特殊值,即可排除D選項(xiàng).【詳解】,函數(shù)為奇函數(shù),排除選項(xiàng)A,B;又當(dāng)時(shí),故選:C.【點(diǎn)睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.3A【解析】由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率【詳解】由題意,由雙曲線定義得,從而得,在中,由余弦定理得,化簡(jiǎn)得故選:A【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點(diǎn)的距離,再由余弦定理得出的齊次式4C【解析】命題:函數(shù)在上單調(diào)遞減,即可判斷出真假命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假【詳解】解:命題:函數(shù),所以,當(dāng)時(shí),即函數(shù)

7、在上單調(diào)遞減,因此是假命題命題:在中,在上單調(diào)遞減,所以,是真命題則下列命題為真命題的是故選:C【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題5A【解析】根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點(diǎn)睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.6C【解析】由已知先求出,即,進(jìn)一步可得,再將所求問題轉(zhuǎn)化為對(duì)于任意正整數(shù)恒成立,設(shè),只需找到數(shù)列的最大值即可.【詳解】當(dāng)時(shí),則,所以,顯然當(dāng)時(shí),故,若對(duì)于任意正整數(shù)不等式恒成立,即對(duì)于任意正整數(shù)恒成立,即對(duì)于任意正整

8、數(shù)恒成立,設(shè),令,解得,令,解得,考慮到,故有當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),有單調(diào)遞減,故數(shù)列的最大值為,所以.故選:C.【點(diǎn)睛】本題考查數(shù)列中的不等式恒成立問題,涉及到求函數(shù)解析、等比數(shù)列前n項(xiàng)和、數(shù)列單調(diào)性的判斷等知識(shí),是一道較為綜合的數(shù)列題.7C【解析】略8A【解析】作出可行域,由,可得.當(dāng)直線過可行域內(nèi)的點(diǎn)時(shí),最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當(dāng)直線過可行域內(nèi)的點(diǎn)時(shí),最大,即最大,最大值為2.解方程組,得.,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.的最小值為8.故選:.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查基本不等式,屬于中檔題.9B【解析】利用乘法運(yùn)算化

9、簡(jiǎn)復(fù)數(shù)即可得到答案.【詳解】由已知,所以,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.10D【解析】選取為基底,其他向量都用基底表示后進(jìn)行運(yùn)算【詳解】由題意是的重心, ,故選:D【點(diǎn)睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個(gè)不共線向量作為基底,其他向量都用基底表示參與運(yùn)算,這樣做目標(biāo)明確,易于操作11C【解析】畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時(shí)函數(shù)取最大值為 故答案選C【點(diǎn)睛】求線性目標(biāo)函數(shù)的最值:當(dāng)時(shí),直線過可行域且在軸上截距最大時(shí),值最大,在軸截距最小時(shí),z值最小;當(dāng)時(shí),直線過可行

10、域且在軸上截距最大時(shí),值最小,在軸上截距最小時(shí),值最大.12D【解析】a,b可看成是與和交點(diǎn)的橫坐標(biāo),畫出圖象,數(shù)形結(jié)合處理.【詳解】令,作出圖象如圖,由,的圖象可知,正確;,有,正確;,有,正確;,有,正確.故選:D.【點(diǎn)睛】本題考查利用函數(shù)圖象比較大小,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。131【解析】本題先根據(jù)公式初步找到數(shù)列的通項(xiàng)公式,然后根據(jù)等差中項(xiàng)的性質(zhì)可解得的值,即可確定數(shù)列的通項(xiàng)公式,代入數(shù)列的表達(dá)式計(jì)算出數(shù)列的通項(xiàng)公式,然后運(yùn)用裂項(xiàng)相消法計(jì)算出前項(xiàng)和,再代入不等式進(jìn)行計(jì)算可得最小正整數(shù)的值【詳解】由題意,當(dāng)時(shí),當(dāng)時(shí),則,成等差

11、數(shù)列,即,解得,即,即,即滿足的最小正整數(shù)的值為1故答案為:1【點(diǎn)睛】本題主要考查數(shù)列求通項(xiàng)公式、裂項(xiàng)相消法求前項(xiàng)和,考查了轉(zhuǎn)化思想、方程思想,考查了不等式的計(jì)算、邏輯思維能力和數(shù)學(xué)運(yùn)算能力14-1【解析】由向量垂直得向量的數(shù)量積為0,根據(jù)數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)論【詳解】由已知,故答案為:1【點(diǎn)睛】本題考查向量垂直的坐標(biāo)運(yùn)算掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵15【解析】作出函數(shù)的圖象及直線,如下圖所示,因?yàn)楹瘮?shù)有個(gè)不同的零點(diǎn),所以由圖象可知,所以16【解析】利用行列式定義,得到與的關(guān)系,賦值,即可求出結(jié)果。【詳解】由,令,得,解得?!军c(diǎn)睛】本題主要考查行列式定義的應(yīng)用。三、解答題:共70分。

12、解答應(yīng)寫出文字說明、證明過程或演算步驟。17 (1) 見解析;(2).【解析】試題分析:(1)連交于可得是中點(diǎn),再根據(jù)面可得進(jìn)而根據(jù)中位線定理可得結(jié)果;(2)取中點(diǎn),由(1)知兩兩垂直. 以為原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,求出面的一個(gè)法向量,用表示面的一個(gè)法向量,由可得結(jié)果.試題解析:(1)證明:連交于,連是矩形,是中點(diǎn).又面,且是面與面的交線,是的中點(diǎn).(2)取中點(diǎn),由(1)知兩兩垂直. 以為原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系(如圖),則各點(diǎn)坐標(biāo)為.設(shè)存在滿足要求,且,則由得:,面的一個(gè)法向量為,面的一個(gè)法向量為,由,得,解得,故存在,使二面角為直角,此時(shí).

13、18(1)見解析;(2)見解析【解析】分析:(1)先證明,再證明FG/平面PBD. (2)先證明平面,再證明BDFG詳解:證明:(1)連結(jié)PE,因?yàn)镚.、F為EC和PC的中點(diǎn), , 又平面,平面,所以平面 (II)因?yàn)榱庑蜛BCD,所以,又PA面ABCD,平面,所以,因?yàn)槠矫?,平面,且,平面,平面,BDFG .點(diǎn)睛:(1)本題主要考查空間位置關(guān)系的證明,意在考查學(xué)生對(duì)這些基礎(chǔ)知識(shí)的掌握水平和空間想象轉(zhuǎn)化能力.(2)證明空間位置關(guān)系,一般有幾何法和向量法,本題利用幾何法比較方便.19()證明見詳解;().【解析】()取中點(diǎn)為,根據(jù)幾何關(guān)系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;()

14、以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】()取的中點(diǎn),連接,.如下圖所示:因?yàn)?,分別是線段和的中點(diǎn),所以是梯形的中位線,所以.又,所以.因?yàn)?,所以四邊形為平行四邊形,所?所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.()因?yàn)?,且平面,故可以為原點(diǎn),的方向?yàn)檩S正方向建立如圖所示的空間直角坐標(biāo)系,如下圖所示:不妨設(shè),則,所以,.所以,.設(shè)平面的法向量為,則所以可取.設(shè)直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.【點(diǎn)睛】本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.20(1)證明見

15、解析;(2)是,理由見解析.【解析】(1)根據(jù)判別式即可證明(2)根據(jù)向量的數(shù)量積和韋達(dá)定理即可證明,需要分類討論,【詳解】解:(1)當(dāng)時(shí)直線方程為或,直線與橢圓相切.當(dāng)時(shí),由得,由題知,即,所以.故直線與橢圓相切.(2)設(shè),當(dāng)時(shí),所以,即.當(dāng)時(shí),由得,則,.因?yàn)?. 所以,即.故為定值.【點(diǎn)睛】本題考查橢圓的簡(jiǎn)單性質(zhì),考查向量的運(yùn)算,注意直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題21(1)(2)見解析【解析】(1)取,則;取,則,; (2)要證,只需證,當(dāng)時(shí),;假設(shè)當(dāng)時(shí),結(jié)論成立,即,兩邊同乘以3 得:而,即時(shí)結(jié)論也成立,當(dāng)時(shí),成立.綜上原不等式獲證.22(1)的普通方程為的直角坐標(biāo)方程為 (2)(-1,0)或(2,3)【解析】(1)對(duì)直線的參數(shù)方程消參數(shù)即可求得直線的普通方程,對(duì)整理并兩邊乘以,結(jié)合,即可求得曲線的直角坐標(biāo)方程。(2)由(1)得:曲線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論